matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteBestimmung von Eigenräumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Bestimmung von Eigenräumen
Bestimmung von Eigenräumen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von Eigenräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Mo 08.10.2007
Autor: BieneJulia

Aufgabe
Man zeige: A = [mm] \pmat{ 0 & 1 \\ 1 & 2 } [/mm] ist über [mm] \IR [/mm] diagonalisierbar.
Man bestimme Eigenwerte und Eigenräume und gebe ein S [mm] \in [/mm] GL [mm] (2,\IR)an, [/mm] so dass [mm] S^{-1} [/mm] AS Diagonalgestalt hat.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

So, habe Probleme bei der Bestimmung der Eigenräume, denn bei der Lösung des homogenen GlS kommt bei mir immer nur die triviale Lösung raus, was ja schon rein logisch nicht sein kann.
Meine Eigenwerte müssten stimmen,
ich erhalte: [mm] \lambda_{1}: [/mm] 1 + [mm] \wurzel{2} [/mm]
und [mm] \lambda_{2}: [/mm] 1-  [mm] \wurzel{2}. [/mm]

Für die Eigenräume muss ich ja nur den Kern [mm] (A-\lambda E_{n}) [/mm] berechnen, also das homogene GLS:

[mm] (-1-\wurzel{2}) x_{1} [/mm] + [mm] x_{2} [/mm] = 0
[mm] x_{1} [/mm] + [mm] (1-\wurzel{2})x_{2} [/mm] = 0

Wie gesagt, bei mir kommt Null raus...
Könnt ihr mir da weiterhelfen und mich auf einen Denk- oder Rechenfehler meinerseits aufmerksam machen?
Vielen lieben Dank,
Julia


        
Bezug
Bestimmung von Eigenräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mo 08.10.2007
Autor: schachuzipus

Hallo Julia,

> Man zeige: A = [mm]\pmat{ 0 & 1 \\ 1 & 2 }[/mm] ist über [mm]\IR[/mm]
> diagonalisierbar.
>  Man bestimme Eigenwerte und Eigenräume und gebe ein S [mm]\in[/mm]
> GL [mm](2,\IR)an,[/mm] so dass [mm]S^{-1}[/mm] AS Diagonalgestalt hat.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> So, habe Probleme bei der Bestimmung der Eigenräume, denn
> bei der Lösung des homogenen GlS kommt bei mir immer nur
> die triviale Lösung raus, was ja schon rein logisch nicht
> sein kann.
>  Meine Eigenwerte müssten stimmen,
> ich erhalte: [mm]\lambda_{1}:[/mm] 1 + [mm]\wurzel{2}[/mm]
>  und [mm]\lambda_{2}:[/mm] 1-  [mm]\wurzel{2}.[/mm]

[daumenhoch] stimmt

> Für die Eigenräume muss ich ja nur den Kern [mm](A-\lambda E_{n})[/mm]
> berechnen [ok] , also das homogene GLS:
>  
> [mm](-1-\wurzel{2}) x_{1}[/mm] + [mm]x_{2}[/mm] = 0
>  [mm]x_{1}[/mm] + [mm](1-\wurzel{2})x_{2}[/mm] = 0

[ok]

> Wie gesagt, bei mir kommt Null raus...  [kopfkratz3]

nö, irgendwie kommt da nicht 0 raus ;-)

Ich schreibs mal in Matrixschreibweise wegen der besseren Übersicht:

[mm] $(A-\lambda_1\cdot{}\mathbb{E}_2)=\pmat{ -1-\sqrt{2} & 1 \\ 1 & 1-\sqrt{2} }$ [/mm]

Soweit war's ok.

Nun addiere mal die 1.Zeile zum [mm] $(1+\sqrt{2})$ [/mm] -fachen der 2.Zeile

Das gibt [mm] \pmat{ -1-\sqrt{2} & 1 \\ 0 & 0 } [/mm]

Also ganz prima ne Nullzeile, setzten wir nun [mm] $x_2=t, t\in\IR$ [/mm]

Dann ist mit Zeile 1: [mm] $(-1-\sqrt{2})x_1+t=0\Rightarrow x_1=\frac{t}{1+\sqrt{2}}$ [/mm]

Also [mm] $Kern(A-\lambda_1)=\{t\cdot{}\vektor{\frac{1}{1+\sqrt{2}}\\1}\mid t\in\IR\}=\{\tilde{t}\cdot{}\vektor{1\\1+\sqrt{2}}\mid \tilde{t}\in\IR\}$ [/mm]

Damit [mm] $Eig(A,\lambda_1)=\langle\vektor{1\\1+\sqrt{2}}\rangle$ [/mm]

Also hast du zu [mm] \lambda_1 [/mm] zB den EV [mm] v_1=\vektor{1\\1+\sqrt{2}} [/mm]

zu [mm] \lambda_2 [/mm] analog...

> Könnt ihr mir da weiterhelfen und mich auf einen Denk- oder
> Rechenfehler meinerseits aufmerksam machen?
>  Vielen lieben Dank,
>  Julia
>  

LG

schachuzipus

Bezug
                
Bezug
Bestimmung von Eigenräumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Mo 08.10.2007
Autor: BieneJulia

Vielen Dank.
Hab das ja auch auf Null gebracht in der Matrix, aber hab mich da wohl verrechnet, denn sonst hätte ich ja ne Nullzeile raus bekommen.
also , danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]