matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBestimmung vom Kern einer Abb.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Bestimmung vom Kern einer Abb.
Bestimmung vom Kern einer Abb. < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung vom Kern einer Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 09.11.2008
Autor: pioneer

Aufgabe
Gegeben sei die Abbilldung:
[mm] V=\IR^{3}, [/mm] W = [mm] \IR^{2} [/mm]

[mm] F=\vektor{x \\ y\\z}=\vektor{x +y\\ x+z}, \nu= \vektor{2 \\ -3\\9} [/mm]
Zwischen den Vektorräumen V und W.

(a) Man Bestimme den Kern(F) durch die Angabe einer Basis dieses Vektorraumes.
(b) Man untersuche, ob [mm] F_{i} [/mm] injektiv ist.
(c) Man berechne [mm] F_{i}(\nu) [/mm]

Hallo!

Es tut mir leid, nicht wie in den Regeln gefordert, eine konkrete Frage stellen zu können.
Ich versuche nun schon seit einigen Stunden dieses Problem mit Hilfe des Skriptums in Griff zu bekommen verstehe es aber nicht einmal. Wie kann ich es mir bildhaft vorstellen? Kann mir jemand einen Lösungsansatz geben?
Danke
pioneer

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung vom Kern einer Abb.: Kern einer Abbildung
Status: (Antwort) fertig Status 
Datum: 18:43 So 09.11.2008
Autor: otto.euler

Kern einer Abbildung ist der Urbildraum von 0. Im konkreten Fall der Raum in [mm] \IR^3, [/mm] der auf [mm] \vektor{0 \\ 0} [/mm] abgebildet wird. Welche Bedingungen müssen also gelten, damit
[mm] \vektor{x+y \\ x+z} [/mm]
der Nullvektor ist? Das ergibt in diesem Fall einen 1-dim. Unterraum in [mm] \IR^3. [/mm]

Ich nehme an, dass [mm] F_{i} [/mm] der Komplementärraum zum Kern ist. Dann ist er in diesem Fall 3-1 = 2 dimensional. Der Komplementärraum zum Kern ist stets injektiv abbildbar.

F(v) ausrechnen ist trivial.

Bezug
                
Bezug
Bestimmung vom Kern einer Abb.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 So 09.11.2008
Autor: pioneer

Hallo Otto

Danke für deine Antwort.
[mm] F_{i} [/mm] ist ein Fehler von mir. Die Aufgabe ist in mehrere Gruppen eingeteilt und i steht für meine Gruppe die sich aus meinem Nachnamen ergibt. Gemeint ist anstatt von [mm] F_{i} [/mm] einfach F stehen, da ich oben auch nur meine Matrix geschrieben habe.

Bezug
                
Bezug
Bestimmung vom Kern einer Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 So 09.11.2008
Autor: pioneer

Hallo

Stimmt es, dass wenn ich den Kern der Matrix bestimmen möchte die Gleichungen:
x + y = 0 und
x + z = 0
aufstellen muss?
Wenn das stimmt, kann ich doch sagen, y = z, oder? Aber wie dann weiter?

Vielen Dank
pioneer

Bezug
                        
Bezug
Bestimmung vom Kern einer Abb.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Mo 10.11.2008
Autor: angela.h.b.

s. die andere Diskussion.

Bitte diskutiere in Zukunft ein und diesele frage nicht in mehreren Diskussionen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]