matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBestimmung unbest. Integrale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Bestimmung unbest. Integrale
Bestimmung unbest. Integrale < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung unbest. Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Sa 29.10.2005
Autor: markus2132

Da die Suche momentan deaktiviert ist weiß ich nicht ob die Frage schon einmal gestellt wurde. Ich poste sie nun einfach.

und zwar ist die Aufgabe:

[mm] \integral_{a}^{b} [/mm] {sin(x)*cos(x) dx}

Ich stehe gerade total auf dem Schlauch.
Bitte um Hilfe. Danke im Vorraus!

Markus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung unbest. Integrale: 2 Varianten
Status: (Antwort) fertig Status 
Datum: 12:48 Sa 29.10.2005
Autor: Loddar

Hallo Markus,

[willkommenmr] !!


> Da die Suche momentan deaktiviert ist weiß ich nicht ob die
> Frage schon einmal gestellt wurde.

Bestimmt ... aber das macht nichts ;-) !


> [mm]\integral_{a}^{b}[/mm] {sin(x)*cos(x) dx}

Du kannst hier auf zwei Wegen vorgehen ...


1. Additionstheorem:

[mm] $2*\sin(x)*\cos(x) [/mm] \ = \ [mm] \sin(2x)$ [/mm]


2. Substitution:

$z \ := \ [mm] \sin(x)$ $\Rightarrow$ [/mm]     $z' \ = \ [mm] \bruch{dz}{dx} [/mm] \ = \ [mm] \cos(x)$ $\gdw$ [/mm]     $dx \ = \ [mm] \bruch{dz}{\cos(x)}$ [/mm]


Kommst Du nun alleine weiter?


Gruß
Loddar


Bezug
                
Bezug
Bestimmung unbest. Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Sa 29.10.2005
Autor: markus2132

Also mit der ersten komme ich dann ja auf:

[mm] \integral_{a}^{b} [/mm] {sin(2x) dx}

und dann integriert:

[-cos(2x)].

sehe ich das richtig?

Bezug
                        
Bezug
Bestimmung unbest. Integrale: Nicht ganz ...
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 29.10.2005
Autor: Loddar

Hallo Markus!


Das stimmt so nicht ganz ...

Zunächst gilt ja für Dein Integral:

[mm] $\integral{\sin(x)*\cos(x) \ dx} [/mm] \ = \ [mm] \bruch{1}{2}*\integral{2*\sin(x)*\cos(x) \ dx} [/mm] \ = \ [mm] \bruch{1}{2}*\integral{\sin(2x) \ dx}$ [/mm]


Und dann hast Du beim Integrieren nicht berücksichtigt, dass da im Argument des [mm] $\sin$ [/mm] ein [mm] $\red{2}x$ [/mm] steht.


Es muss heißen:  [mm] $\bruch{1}{2}*\integral{\sin(2x) \ dx} [/mm] \ = \ [mm] \bruch{1}{2}*\red{\bruch{1}{2}}*\left[-\cos(2x)\right]$ [/mm]


Du kannst ja mal die Probe machen, indem Du die erhaltene Stammfunktion wieder ableitest. Dann sollte nämlich wieder unsere Ausgangsfunktion herauskommen ...


Gruß
Loddar


Bezug
                                
Bezug
Bestimmung unbest. Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Sa 29.10.2005
Autor: markus2132

Erstmal noch danke Loddar für deine Mühen und Hilfe, aber eines blicke ich jetzt nicht ganz...

Wie kommst du von: [mm] \bruch{1}{2} [/mm] *  [mm] \integral_{a}^{b} [/mm] {2 * sin(x) * cos(x) dx}

auf

[mm] \bruch{1}{2} [/mm] *  [mm] \integral_{a}^{b} [/mm] {sin(2x) dx}



Bezug
                                        
Bezug
Bestimmung unbest. Integrale: Additionstheorem
Status: (Antwort) fertig Status 
Datum: 13:29 Sa 29.10.2005
Autor: Loddar

Hallo Markus!


Das ist doch exakt die Identität gemäß Additionstheorem aus meiner ersten Antwort:

[mm] $2*\sin(x)*\cos(x) [/mm] \ = \ [mm] \sin(2x)$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]