matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBestimmung lokaler Extrema
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Bestimmung lokaler Extrema
Bestimmung lokaler Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung lokaler Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:45 Mi 22.04.2009
Autor: stonefree1343

Aufgabe
Bestimmen die lokalen Extremwerte von f.
f(x,y) = 3 [mm] x^3 [/mm] + 3 [mm] y^3 [/mm] - 9xy

Hier ein Versuch einer Lösung. So richtig weiß ich noch nicht was ich mit der Aufgabe anfangen soll..

Ich habe jetzt erstmal die erste Ableitung jeweils von x, und von y bestimmt.. [mm] f_x [/mm] = [mm] 9x^2 [/mm] - 9y und [mm] f_y [/mm] = [mm] 9y^2 [/mm] - 9x ..habe diese gleich Null gesetzt, die Gleichungen addiert und umgestellt
x(9x - 9) + y(9y-9) = 0
..habe daraus die Nullstellen [mm] x_1 [/mm] = 0, [mm] x_2 [/mm] = 1, [mm] y_1 [/mm] =0, [mm] y_2 [/mm] = 1 gezogen.

Dann habe ich die zweiten Ableitungn bestimmt [mm] f_{xx} [/mm] = 18x und [mm] f_{yy} [/mm] = 18y und darin die Nullstellen eingesetzt ..damit erhalte ich für den Fall [mm] x_1 [/mm] = 0, die Zahl 0 und für [mm] x_2 [/mm] = 1, die Zahl 18.
- 18 größer Null würde bedeuten es handelt sich dort um ein Minimum.
- Null gleich Null bedeutet??
Für [mm] y_1 [/mm] = 0 erhalte ich ebenfalls die Zahl Null (Deutung??) und für [mm] y_2 [/mm] = 1 die Zahl 18, also größer Null, ein Minimum


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Bestimmung lokaler Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Do 23.04.2009
Autor: schachuzipus

Hallo stonefree,

> Bestimmen die lokalen Extremwerte von f.
>  f(x,y) = 3 [mm]x^3[/mm] + 3 [mm]y^3[/mm] - 9xy
>  Hier ein Versuch einer Lösung. So richtig weiß ich noch
> nicht was ich mit der Aufgabe anfangen soll..
>  
> Ich habe jetzt erstmal die erste Ableitung jeweils von x,
> und von y bestimmt.. [mm]f_x[/mm] = [mm]9x^2[/mm] - 9y und [mm]f_y[/mm] = [mm]9y^2[/mm] - 9x
> ..habe diese gleich Null gesetzt, die Gleichungen addiert
> und umgestellt
>  x(9x - 9) + y(9y-9) = 0
> ..habe daraus die Nullstellen [mm]x_1[/mm] = 0, [mm]x_2[/mm] = 1, [mm]y_1[/mm] =0, [mm]y_2[/mm]
> = 1 gezogen.

[daumenhoch]

Na, das klappt doch gut mit dem partiellen Ableiten!

Du hast also die stationären Punkte [mm] $(x_0,y_0)=(0,0)$ [/mm] und [mm] $(x_1,y_1)=(1,1)$ [/mm] herausbekommen

Nun stelle die Hessematrix in diesen Punkten auf:

[mm] $H(x,y)=\pmat{f_{xx}(x,y)&f_{xy}(x,y)\\f_{yx}(x,y)&f_{yy}(x,y)}$ [/mm]

Also, wie du richtig berechnet hast [mm] $H(x,y)=\pmat{18x&-9\\-9&18y}$ [/mm]

Damit [mm] $H(0,0)=\pmat{0&-9\\-9&0}$ [/mm] und [mm] $H(1,1)=\pmat{18&-9\\-9&18}$ [/mm]

>
> Dann habe ich die zweiten Ableitungn bestimmt [mm]f_{xx}[/mm] = 18x
> und [mm]f_{yy}[/mm] = 18y und darin die Nullstellen eingesetzt [ok]
> ..damit erhalte ich für den Fall [mm]x_1[/mm] = 0, die Zahl 0 und
> für [mm]x_2[/mm] = 1, die Zahl 18.
> - 18 größer Null würde bedeuten es handelt sich dort um ein
> Minimum.
>  - Null gleich Null bedeutet??
>  Für [mm]y_1[/mm] = 0 erhalte ich ebenfalls die Zahl Null
> (Deutung??) und für [mm]y_2[/mm] = 1 die Zahl 18, also größer Null,
> ein Minimum

Was für Zahlen erhältst du da wie?

Schaue nochmal ins Skript, wie das mir der Hessematrix und den Extrema ist.

Stichworte: Definitheit und/oder Eigenwerte der H-Matrix ...

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]