matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenBestimmung einer Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ganzrationale Funktionen" - Bestimmung einer Funktion
Bestimmung einer Funktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung einer Funktion: Lösung nicht nachvollziehbar
Status: (Frage) beantwortet Status 
Datum: 11:22 Mi 23.05.2012
Autor: Ivnimor

Aufgabe
1. Gegeben sind die ganrationalen Funktionen dritten Grades fk: x-> fk(x); Dfk = [mm] \IR [/mm] mit k  [mm] \in \IR \wedge [/mm] k > 0. Der Graph einer solchen Funktion wird mit Gfk bezeichnet.

1.1 Der Graph Gfk besitzt im Koordinatenursprunung die Wendetangente mit der Gleichung y=1/3kx und enthält den Punkt Pk (-2/3k;2/27k²).

Bestimmen sie den Funktionsterm

So, ich schrebe am Freitag meine Abschlussprüfung im Fach Mathe. Bin aber nicht auf einem Gymnasium, sondern auf einer Fachoberschule. Jetzt aber gerate ich bei der Bearbeitung alter Abschlussprüfungen immer wieder ins Stocken. Also hoffe ich euch, dass ihr mir helfen könnt:

An sich ist die Aufgabe kein Problem. Ersteinmal ist es wichtig, dass die Aufgabe eine Funktion dritten Grades ist, d.h.:

f(x) = ax³ + bx² + cx + d
f'(x) = 3ax² + 2bx + c
f''(x) = 6ax + 2b

Soweit so gut, dann noch die Bedinungen:

I. f(-2/3k) = 2/27k² -> Der Punkt Pk [Die Ausschreibung spare ich mir, darum gehts auch gar nicht]

II. f(0) = 0 -> Wendetangente im Koordinantenursprung, d.h. Wendepunkt

III. f'(0) = 1/3kx -> Steigung der Wendetangente

IV.   f''(0) = ?



So, genau daran haperts: Woher weiß ich, welcher Y-Wert die Nullstelle der zweiten Ableitung hat. Der X-Wert ist klar, daran ist nichts auszusetzen, aber der Y-Wert der Nullstelle der zweiten Ableitung ist aber überhaupt nicht mal so klar.

In der Lösung wird groß damit geprießen, dass der Y-Wert der 2. Ableitung der Nullstelle = 0 ist. Aber wie zum Teufel kommt man auf diesem Wert? Mir dünkts, als hätte der Koordiantenursprung vllt. eine bestimmte Bedeutung für den Y-Wert, aber weiß es nicht.


Also: Ich bitte euch mir zu helfen um die Lösung nachzuvollziehen. Es geht allein um die IV. Bedingung, an den anderen Dingen scheiters nicht. Wie kommt man auf f''(0) = 0 ist? Woher wirds aus der Aufgabe ersichtlich?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bestimmung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mi 23.05.2012
Autor: fred97

Oben heißt es doch:

"Der Graph Gfk besitzt im Koordinatenursprunung die Wendetangente....."

Das bedeutet unter anderem: [mm] f_k [/mm] hat in (0|0) einen Wendepunkt. Damit ist [mm] f_k''(0)=0 [/mm]

FRED

Bezug
                
Bezug
Bestimmung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 Mi 23.05.2012
Autor: Ivnimor

Argh! Ich Idiot. Na klar, ich habe da jetzt total was verwechselt. Eine Nullstelle - egal welche Ableitung - wird immer y = 0 haben. Micht hat es anscheinend nur irritiert, dass auch der X-Wert: x = 0 war und habe da wohl etwas vertauscht. Oh man, manchmal lege ich mir mehr Steine in den Weg, als es überhaupt gibt.

Okay, klasse. Nochmals danke!

Bezug
                        
Bezug
Bestimmung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:34 Mi 23.05.2012
Autor: fred97


> Argh! Ich Idiot. Na klar, ich habe da jetzt total was
> verwechselt. Eine Nullstelle - egal welche Ableitung - wird
> immer y = 0 haben. Micht hat es anscheinend nur irritiert,
> dass auch der X-Wert: x = 0 war und habe da wohl etwas
> vertauscht. Oh man, manchmal lege ich mir mehr Steine in
> den Weg, als es überhaupt gibt.

Ruhig Blut:

http://img.fotocommunity.com/images/Kunst-und-Kultur/Steinkunst/Steine-im-Weg-a22856448.jpg

FRED

>  
> Okay, klasse. Nochmals danke!  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]