matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenBestimmung e.ganzrat. Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Steckbriefaufgaben" - Bestimmung e.ganzrat. Funktion
Bestimmung e.ganzrat. Funktion < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung e.ganzrat. Funktion: Ist das richtig so?
Status: (Frage) beantwortet Status 
Datum: 16:23 So 29.01.2006
Autor: splin

Aufgabe
Bestimme eine ganzrationale Funktion vierten Grades, so daß für den Graphen der Funktion gilt:
T(2;4) ist relativer Tiefpunkt, W(0;0) Wendepunkt und
die Wendetangente hat die Steigung 1.

Ich habe die Aufgabe gelöst und folgende Funktion bestimmt:
[mm] ax^4 [/mm] + [mm] bx^3 [/mm] + [mm] cx^2 [/mm] + dx + e
[mm] a=\bruch{1}{4};b= [/mm] - [mm] \bruch{3}{4}; [/mm] c=0 ; d=1;e=0
[mm] \Rightarrow f(x)=\bruch{1}{4}x^4 [/mm] - [mm] \bruch{3}{4}x^3 [/mm] + x

Die Probe hat auch gepasst bis auf die Überprüfung von Funktionswerten des Wendepunkts W(2;4); da habe ich [mm] f(2)\not=4. [/mm]

Antwort: die gesuchte Funktion existiert nicht.

Ist das richtig so? Oder habe ich mich vertan?


















        
Bezug
Bestimmung e.ganzrat. Funktion: a und b falsch
Status: (Antwort) fertig Status 
Datum: 16:41 So 29.01.2006
Autor: Loddar

Hallo splin!


Ich habe hier einen eindeutige Lösung ermitteln können. Dabei habe ich für $a_$ und $b_$ andere Werte erhalten.

Wie lauten denn Deine Bestimmungsgleichungen?


Kontrollergebnis (bitte nachrechnen): $f(x) \ = \ [mm] -\bruch{1}{2}x^4+\bruch{5}{4}x^3+x$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Bestimmung e.ganzrat. Funktion: Wo liegt mein Fehler?
Status: (Frage) beantwortet Status 
Datum: 20:41 So 29.01.2006
Autor: splin

Wo habe ich mein Fehler? Ich habe folgernerweise gerechnet:
Die f hat einen Wendepunkt (0;0)  [mm] \Rightarrow [/mm]  f´´(0)=0
[mm] \Rightarrow [/mm] c=0
Die f hat einen WP (0;0)  [mm] \Rightarrow [/mm]  f(0)=0
[mm] \Rightarrow [/mm] e=0
Die Wendetangente in 0 hat die Steigung 1 [mm] \Rightarrow [/mm] f'(0)=1
[mm] \Rightarrow [/mm] d=1
Die f hat einen Tiefpunkt T(2;4)  [mm] \Rightarrow [/mm] f'(2)=0
[mm] \Rightarrow [/mm] 32a+12b+1=0 - erste Bestimmungsgleichung
Die f hat einen T(2;4)  [mm] \Rightarrow [/mm] f(2)=4
[mm] \Rightarrow [/mm] 16a+8b+2=0 - zweite Bestimmungsgleichung
Nachdem ich die beide aufgelöst, habe ich [mm] a=\bruch{1}{4} [/mm] und [mm] b=-\bruch{3}{4} [/mm]
[mm] \Rightarrow [/mm] f(x)= [mm] \bruch{1}{4}x^4- \bruch{3}{4}x^3+x. [/mm]

Kann mir jemand mein Fehler erklären?








> Hallo splin!
>  
>
> Ich habe hier einen eindeutige Lösung ermitteln können.
> Dabei habe ich für [mm]a_[/mm] und [mm]b_[/mm] andere Werte erhalten.
>  
> Wie lauten denn Deine Bestimmungsgleichungen?
>  
>
> Kontrollergebnis (bitte nachrechnen): [mm]f(x) \ = \ -\bruch{1}{2}x^4+\bruch{5}{4}x^3+x[/mm]
>  
>
> Gruß
>  Loddar
>  

Bezug
                        
Bezug
Bestimmung e.ganzrat. Funktion: Schusselfehler
Status: (Antwort) fertig Status 
Datum: 20:51 So 29.01.2006
Autor: Loddar

Hallo splin!


> Die f hat einen T(2;4)  [mm]\Rightarrow[/mm] f(2)=4
> [mm]\Rightarrow[/mm] 16a+8b+2=0

Es muss heißen: $16a+8b +2 \ = \ [mm] \red{4}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]