matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBestimmung der Wahrscheinlichk
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Bestimmung der Wahrscheinlichk
Bestimmung der Wahrscheinlichk < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Wahrscheinlichk: Normalverteilung/Hypothesent.
Status: (Frage) beantwortet Status 
Datum: 15:27 So 04.03.2007
Autor: Sash111

Aufgabe
Ein Sportschuhhersteller verkündet, dass sein neues Produkt bei 99% seiner Kunden die Sprintleistung verbessern wird.
e) In einem kleinen Leichtathletik-Verein schwärmen die Mitglieder von dem neuen Schuh und behaupten, bei allen hätten sich die Leistungen verbessert.
Es liegt auf der Hand, dass veu der Betrachtung hinreichend vieler Personen auch solche dabei sein werden, die keine Verbesserung der Sprintleistung feststellen. Ermitteln Sie daher die Mindestanzahl von Vereinsmitgliedern, ab der die Wahrscheinlichkeit, dass bei allen Mitgliedern Leistungsverbesserungen zu beobachten sind, unter 0,05% sinkt.

Hallo,
ich hab versucht mit Hilfe der Formel der Normalverteilung die Anzahl an Sportlern zu bestimmen.

[mm] P(X\ge a)=1-\Phi\left(\bruch{a-\mu}{\sigma}\right) [/mm]

Eingesetzt:

[mm] 0,00049\overline{9}=1-\Phi\left(\bruch{a-(950*0,01)}{\wurzel{950*0,99*0,01}}\right) [/mm]

Dann hab ich das in der Formel von [mm] \Phi [/mm] eingesetzt.

Formel von Phi: [mm] \Phi(x)=\bruch{1}{\wurzel{2*\pi}}\integral_{-\infty}^{x}*e^{-0,5t²}dt [/mm]


[mm] 0,00049\overline{9}=1-\Phi\left(\bruch{a-(950*0,01)}{\wurzel{950*0,99*0,01}}\right)=1-\bruch{1}{\wurzel{2*\pi}}\integral_{-\infty}^{\bruch{a-(950*0,01)}{\wurzel{950*0,99*0,01}}}*e^{-0,5t²} [/mm] dt

Jetzt weiss ich nur nicht wie ich nach a auflösen soll und wie ich t bestimme.
Kennt jemand vielleicht einen einfacheren Lösungsweg ?
Vielleicht mit Hilfe eines linksseitigen Hypothesentests oder so.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

MfG Sash111


        
Bezug
Bestimmung der Wahrscheinlichk: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 So 04.03.2007
Autor: Kroni

Hi,

du machst es dir hier denke ich zu schwer.

Es liegt hier ja vereinfacht gesehen eine Bernuollikette der Länge n vor.
n sei die Anzahl der Befragten Personen.
X ist dann die Anzahl der Personen, die eine Verbesserung feststellen.
X ist B(n;0,99)-verteilt.

Okay, jetzt soll die Wahrscheinlichkeit dafür, dass ALLE Leute eine Verbesserung bemerken kleiner 0,05% sein.
D.h. P(X=n)<0,0005
Und das kannst du mit Hilfe der "normalen" Bernoulliformel auflösen.

Slaín,

Kroni

Bezug
                
Bezug
Bestimmung der Wahrscheinlichk: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 So 04.03.2007
Autor: Sash111

Ich Danke dir Kroni,
hätte nicht gedacht, dass die Teilaufgabe so einfach zu lösen ist.

MfG Sash111

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]