matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisBestimmung der Varianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "stochastische Analysis" - Bestimmung der Varianz
Bestimmung der Varianz < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Varianz: ZV mit Brownscher Bewegung
Status: (Frage) beantwortet Status 
Datum: 12:47 Mi 15.08.2012
Autor: torstentw

Aufgabe
Hallo ich habe folgende normalverteilte Zufallsvariable $L=a [mm] \int_0^T \varphi(s) dB_s [/mm] + (1-a) [mm] \epsilon$ [/mm] mit [mm] \varphi \in L^2(\mathbb{R}_+,ds) [/mm] und [mm] \epsilon [/mm] ist standard normalverteilt.

Unter der Filtration [mm] \mathcal{F}_t, [/mm] die durch B generiert wird, muss ich [mm] Law(L|\mathcal{F}_t) [/mm] finden.

Also habe ich mit der Martingaleigenschaft der Brownschen Bewegung folgenden Erwartungswert bestimmt:

[mm] E[L|\mathcal{F}_t]=E[a \int_0^T \varphi(s) dB_s|\mathcal{F}_t]+ E[(1-a)\epsilon|\mathcal{F}_t]=E[a \int_0^T \varphi(s) dB_s|\mathcal{F}_t]=a \int_0^t \varphi(s) dB_s [/mm]

Nun zur Varianz:

$Var L = Var (a [mm] \int_0^T \varphi(s) dB_s)+ [/mm] Var((1-a) [mm] \epsilon)+2 [/mm] Cov(a [mm] \int_0^T \varphi(s) dB_s, (1-a)\epsilon) [/mm] = [mm] a^2\int_t^T \varphi(s)^2 [/mm] ds [mm] +(1-a)^2 [/mm] + 2 Cov(a [mm] \int_0^T \varphi(s) dB_s, (1-a)\epsilon)$ [/mm]

Und zur Kovarianz:

$Cov(a [mm] \int_0^T \varphi(s) dB_s, (1-a)\epsilon) [/mm] = E[(a [mm] \int_0^T \varphi(s) dB_s [/mm] - E[a [mm] \int_0^T \varphi(s) dB_s])(((1-a)\epsilon)-E[(1-a)\epsilon])] [/mm] = E[(a [mm] \int_t^T \varphi(s) dB_s)(((1-a)\epsilon)] [/mm] = 0$

wegen der Unabhängigkeit am Ende.



Stimmt das soweit?

        
Bezug
Bestimmung der Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Mi 15.08.2012
Autor: Gonozal_IX

Hiho,

> [mm][mm] E[L|\mathcal{F}_t]=E[a \int_0^T \varphi(s) dB_s|\mathcal{F}_t]+ E[(1-a)\epsilon|\mathcal{F}_t] [/mm]

[ok]

> E[a [mm] \int_0^T \varphi(s) dB_s|\mathcal{F}_t] [/mm]

Wo ist dein [mm] $E[\epsilon [/mm] | [mm] \mathcal{F}_t]$ [/mm] hin? Ohne weitere Informationen an [mm] \epsilon [/mm] (z.B. unabhängig von B) kannst du darüber keine Aussage treffen.

> Nun zur Varianz:
>  
> [mm]Var L = Var (a \int_0^T \varphi(s) dB_s)+ Var((1-a) \epsilon)+2 Cov(a \int_0^T \varphi(s) dB_s, (1-a)\epsilon) = a^2\int_t^T \varphi(s)^2 ds +(1-a)^2 + 2 Cov(a \int_0^T \varphi(s) dB_s, (1-a)\epsilon)[/mm]

Dein erstes Integral sollte wohl von 0 starten anstatt von t.
Ansonsten passts. Bei der Kovarianz könntest du noch Konstanten ausklammern (aber offensichtlich liegt keine Unabhängigkeit vor).

> Und zur Kovarianz:
>  
> [mm]Cov(a \int_0^T \varphi(s) dB_s, (1-a)\epsilon) = E[(a \int_0^T \varphi(s) dB_s - E[a \int_0^T \varphi(s) dB_s])(((1-a)\epsilon)-E[(1-a)\epsilon])] = E[(a \int_t^T \varphi(s) dB_s)(((1-a)\epsilon)] = 0[/mm]
>  
> wegen der Unabhängigkeit am Ende.


Wo steht, dass die Unabhängig sein sollen?
Wenn sie das sind, hättest du den Kovarianz-Term beim Auseinanderziehen der Varianz auch weglassen können.

MFG,
Gono.

Bezug
                
Bezug
Bestimmung der Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 15.08.2012
Autor: torstentw


>Wo ist dein [mm]E[\epsilon | \mathcal{F}_t][/mm] hin? Ohne >weitere Informationen an [mm]\epsilon[/mm] (z.B. unabhängig >von B) kannst du darüber keine Aussage treffen.

Sorry. [mm] \epsilon [/mm] ist unabhänging von B. Wenn man zu lange in der Aufgabe ist verliert man das wohl aus den Augen.

> Wenn sie das sind, hättest du den Kovarianz-Term beim >Auseinanderziehen der Varianz auch weglassen können.

Stimmt. Dann fällt der Term weg. Jetzt schäm ich mich :)

>Dein erstes Integral sollte wohl von 0 starten anstatt von t.
Hm ok. Ich dachte :

$ Var (a [mm] \int_0^T \varphi(s) dB_s)= [/mm] E[(a [mm] \int_0^T \varphi(s) dB_s)^2|\mathcal{F}_t] [/mm] - E[(a [mm] \int_0^T \varphi(s) dB_s)|\mathcal{F}_t]^2 [/mm]
= [mm] E[a^2\int_0^T \varphi(s)^2 ds|\mathcal{F}_t] [/mm] - [a [mm] \int_0^t \varphi(s) dB_s]^2 [/mm]
= [mm] a^2\int_0^T \varphi(s)^2 [/mm] ds - [mm] a^2\int_0^t \varphi(s)^2 [/mm] ds = [mm] a^2\int_t^T \varphi(s)^2 [/mm] ds

Wo ist mein Fehler?


Bezug
                        
Bezug
Bestimmung der Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Mi 15.08.2012
Autor: Gonozal_IX

Hiho,

> $ Var (a [mm]\int_0^T \varphi(s) dB_s)=[/mm] E[(a [mm]\int_0^T \varphi(s) dB_s)^2|\mathcal{F}_t][/mm]
> - E[(a [mm]\int_0^T \varphi(s) dB_s)|\mathcal{F}_t]^2[/mm]

Das macht doch so keinen Sinn. Links steht eine relle Zahl, rechts eine Zufallsvariable.
Wo kommt denn deine Bedingung plötzlich her?

Es gilt stink normal:

[mm] $Var\left(a \int_0^T \varphi(s) dB_s\right) [/mm] = [mm] E\left[\left(a \int_0^T \varphi(s) dB_s\right)^2\right] [/mm] = [mm] \ldots$ [/mm]

MFG,
Gono.

Bezug
                                
Bezug
Bestimmung der Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Mi 15.08.2012
Autor: torstentw

Aber die Verteilung wird bedingt unter [mm] \mathcal{F}_t [/mm] bestimmt? D.h. ich benötige die bedingte Varianz nicht wahr?

Also ich habe das in vereinfacht in einem englischen Buch gefunden mit

[mm] L=\int_0^T \varphi(s)dB_s [/mm]

Dann heißt es:

Conditionally on [mm] \mathcal{F}_t, [/mm] L is gaussian with variance [mm] \sigma^2_t= \int_t^T \varphi^2(s)ds.[/mm]

Bezug
                                        
Bezug
Bestimmung der Varianz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:08 Do 16.08.2012
Autor: torstentw


Bezug
                                                
Bezug
Bestimmung der Varianz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 18.08.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
Bestimmung der Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 18.08.2012
Autor: Gonozal_IX

Hiho,

verzeih die späte Antwort, hatte aber selbst Prüfungsstreß in dem Bereich ;-)

> Aber die Verteilung wird bedingt unter [mm]\mathcal{F}_t[/mm] bestimmt? D.h. ich benötige die bedingte Varianz nicht wahr?

Was soll denn die bedingte Varianz sein? So eine Bezeichnung gibt's nicht.
Was du meinst, ist die Varianz der bedingten Erwartung.

> Also ich habe das in vereinfacht in einem englischen Buch gefunden mit
> [mm]L=\int_0^T \varphi(s)dB_s[/mm]
> Dann heißt es:
>  
> Conditionally on [mm]\mathcal{F}_t,[/mm] L is gaussian

Ja.

> with variance [mm]\sigma^2_t= \int_t^T \varphi^2(s)ds.[/mm]  

Nein. Mit Varianz [mm] $\int_0^t \varphi^2(s)ds$ [/mm]
Welches Buch ist das denn?

MFG,
Gono.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]