matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesBestimmung der Umkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Bestimmung der Umkehrfunktion
Bestimmung der Umkehrfunktion < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:30 Sa 03.05.2008
Autor: gaugi

Hallo!
Hier geht es nicht um eine Pflichtaufgabe, sonder ein Problem, das mir vor kurzem in den Sinn kam:
Die Umkehrfunktion der Funktion [mm] f(x)=x^{x} [/mm]
Meine Mathe-Professorin konnte mir nicht helfen. Vll könnt ihr es? Würde mich sehr freuen!

mfg gaugi

ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung der Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:41 Sa 03.05.2008
Autor: leduart

Hallo
Nicht zu jeder Funktion gibts ne Umkehrfkt, und ich bin recht sicher zu dieser hier nicht.
Gruss leduart

Bezug
                
Bezug
Bestimmung der Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:12 Sa 03.05.2008
Autor: mareike-f

Hi,
das ist doch auch nicht bijektiv, oder?
Also von [mm]\IN \to \IN[/mm] nicht, also ich male mir immer noch "Kreise" auf und hab das mal ausprobiert.
Und wenn ich es richtig verstanden hab können doch nur bijektive Funktionen Umkehrfunktionen haben.

Grüße,
Mareike

Bezug
        
Bezug
Bestimmung der Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 02:05 Sa 03.05.2008
Autor: Marcel

Hallo,

[mm] $f(x)=x^x=\exp(x*\ln(x))$ [/mm] hat als Ableitung:

[mm] $f\,'(x)=x^x*(\ln(x)+1)$ [/mm] (stets $x > 0$)

Ein wenig Kenntnis in der Differentialrechnung zeigt, dass $f$ auf [mm] $\left(0,\frac{1}{e}\right]$ [/mm] streng monoton fallend ist, sowie, dass $f$ auf [mm] $\left[\frac{1}{e},\infty\right)$ [/mm] streng monoton wachsend gegen [mm] $\infty$ [/mm] ist. Was man sich damit auch (wegen der Stetigkeit von $$ auf [mm] $(0,\infty)$) [/mm] leicht überlegt:
$f$ ist nicht injektiv auf [mm] $(0,\infty)$. [/mm] Es wäre also sinnvoll, entweder $f$ auf [mm] $\left(0,\frac{1}{e}\right]$ [/mm] oder $f$ auf [mm] $\left[\frac{1}{e},\infty\right)$ [/mm] einzuschränken, um dort überhaupt von einer Umkehrfunktion sprechen zu können. In einer meiner Ansicht nach sinnvollen Weise würde ich $f$ auf [mm] $\left[\frac{1}{e},\infty\right)$ [/mm] eingeschränkt betrachten.

Dann ist [mm] $f_1: \left[\frac{1}{e},\infty\right) \to \left\{x \in \IR: x \ge \left(\frac{1}{e}\right)^{\frac{1}{e}}\right\}$ [/mm] mit [mm] $f_1(x)=f(x)=x^x$ [/mm] bijektiv.

Und bei [mm] $f_1$ [/mm] könntest Du dann überhaupt mal von einer Umkehrfunktion sprechen. D.h.:
Ist $y [mm] \ge \left(\frac{1}{e}\right)^{\frac{1}{e}}$, [/mm] so existiert jedenfalls genau ein $x [mm] \ge \frac{1}{e}$ [/mm] mit [mm] $y=f(x)=x^x$. [/mm] Dass sich dieses $x$ in Abhängigkeit von $y$ mit "elementaren Funktionen" darstellen läßt, muss nicht sein. Die Existenz einer Umkehrfunktion zu [mm] $f_1$ [/mm] ist jedenfalls klar (für Schüler vll. nicht ganz, aber es folgt i. W. wegen strenger Monotonie und Stetigkeit von [mm] $f_1$ [/mm] und wegen meiner Wahl des Definitions- und Zielbereichs von [mm] $f_1$, [/mm] so dass [mm] $f_1$ [/mm] bijektiv ist). D.h. allerdings nicht, dass sich die zu [mm] $f_1$ [/mm] gehörige Umkehrfunktion auch "explizit mit elementaren Funktionen" darstellen lassen muss... Und darüber will ich momentan auch - ehrlich gesagt - nicht wirklich weiter drüber nachdenken ;-)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]