matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBestimmung der Stammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Bestimmung der Stammfunktion
Bestimmung der Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Stammfunktion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 09:33 Sa 08.07.2006
Autor: mick84

Aufgabe
Die Stammfunktion soll bestimmt werden:
Angegeben ist folgende Funktion:
[mm] f(x)=(x^3+1)^2*6x(x^2+1)^2+6x^2(x^3+1)*(x^2+1)^3 [/mm]
Als Lösung ohne Zwischenschritte wird vom Lehrer sofort angegeben:
[mm] F(x)=(x^3+1)^2(x^2+1)^3 [/mm]

Die Frage ist wie kommt er ohne weitere Zwischenschritte direkt auf die Stammfunktion? Gibt es hilfreiche Tips um die Stammfunktion solcher Klammertherme zu finden?

Gruß
Michael

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung der Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Sa 08.07.2006
Autor: Karl_Pech

Hallo Michael,


> Die Stammfunktion soll bestimmt werden:
>  Angegeben ist folgende Funktion:
>  [mm]f(x)=(x^3+1)^2*6x(x^2+1)^2+6x^2(x^3+1)*(x^2+1)^3[/mm]
>  Als Lösung ohne Zwischenschritte wird vom Lehrer sofort
> angegeben:
>  [mm]F(x)=(x^3+1)^2(x^2+1)^3[/mm]
>  
> Die Frage ist wie kommt er ohne weitere Zwischenschritte
> direkt auf die Stammfunktion?


Bilde doch die Ableitung von $F(x)$ und zwar von den einzelnen Faktoren-Klammertermen. Dazu mußt du ja dann die Produktregel in Verbindung mit der Kettenregel benutzen. Setze erstmal:


[mm]F(x) = \underbrace{\left(x^3+1\right)^2}_{u(x)}\underbrace{\left(x^2+1\right)^3}_{v(x)}[/mm]

...


Der Lehrer hat hier also einfach seine Erfahrung "spielen lassen". Er hat sich den obigen Summenterm von $f$ angeschaut, und erinnerte sich sogleich, daß das der Produktregel der Ableitung (wegen dem '+' entsprechen) könnte. Also die Termstruktur [mm]\red{(\cdot{})}\blue{(\cdot{})} + \blue{(\cdot{})}\red{(\cdot{})}[/mm] läßt doch zumindest diesen Verdacht aufkommen, oder? Jetzt muß man sich nur noch anschauen in welcher Beziehung die einzelnen Faktoren der zwei Summen zueinander stehen, und erkennen, daß einen hier die eigene Intuition nicht getäuscht hat. :-)



Grüße
Karl





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]