matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisBestimmung der Fourierreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Bestimmung der Fourierreihe
Bestimmung der Fourierreihe < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Mo 14.05.2007
Autor: Rinho

Aufgabe
Die Funktion f ist [mm] 2-\pi-periodisch [/mm] mit
f(x) = -1 für [mm] -\pi \le [/mm] x [mm] \le -\pi/2 [/mm]
f(x) = 1   für [mm] -\pi/2 \le [/mm] x [mm] \le \pi/2 [/mm]
f(x) = -1 für [mm] \pi/2 \le [/mm] x [mm] \le \pi [/mm]

Um die Koeffizienten [mm] a_{0} [/mm] und [mm] a_{k} [/mm] zu bestimmen, muss ich ja über die Funktion f (bzw. f * cos(kx) integrieren).
Meine Frage ist, wie ich das f bestimmen kann.
Muss ich ein f finden, was die Funktion im kompletten Intervall beschreibt oder muss ich für jedes Teilintervall eine Funktion aufstellen, also wie bereits in der Aufgabe angegeben und dann je nach Teilintervall über -1 bzw. 1 integrieren?


        
Bezug
Bestimmung der Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Mo 14.05.2007
Autor: wauwau

Da du von [mm] -\pi [/mm] bis [mm] +\pi [/mm] integrieren musst, musst du diese Intervall einfach gemäß der Funktion aufteilen und dann integrierst du einmal -cos(kx) und einmal +cos(kx)

Bezug
                
Bezug
Bestimmung der Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mo 14.05.2007
Autor: Rinho

Danke für die Antwort.

Wenn ich dieses durchführe erhalte ich für x [mm] \in [-\pi, -\pi/2]: [/mm]
[mm] a_{0} [/mm] = [mm]\integral_{-\pi}^{\pi} \,-1 dx[/mm] = [-x] = 0
[mm] a_{k} [/mm] = [mm] \bruch{1}{\pi}[/mm]  [mm]\integral_{-\pi}^{\pi} -cos(x)\, dx[/mm] = 0
[mm] b_{k} [/mm] = 0 da f gerade Funktion.

Dies erscheint mir nicht sehr sinnvoll. Muss ich vielleicht die Grenzen der Integrale an die Intervallgrenzen anpassen, in deren Intervall ich die Funktion betrachte?

Bezug
                        
Bezug
Bestimmung der Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Mo 14.05.2007
Autor: wauwau

Du musst stets das integral in die 3 unterschiedl. Definitionsbereiche der Fuktion unterteilen..


[mm] \integral_{-\pi}^{+\pi}=\integral_{-\pi}^{-\bruch{\pi}{2}}+\integral_{-\bruch{\pi}{2}}^{+\bruch{\pi}{2}}+\integral_{+\bruch{\pi}{2}}^{+\pi} [/mm]

Bezug
                                
Bezug
Bestimmung der Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Mo 14.05.2007
Autor: Rinho

Alles klar, die Lösung ergibt auch mehr Sinn :-)
Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]