matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBestimmung der Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Bestimmung der Extrema
Bestimmung der Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Extrema: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 21:53 Mi 14.08.2013
Autor: Cauchy123

Hallo,

ich habe folgende Frage:

gibt es irgendeinen kürzeren Weg (eine Technik) in der Mathematik, für Funktionen der Art f:x-->x'Ax, wobei x ein n-dimensionaler Vektor, x' ihre Transponierte, und A irgendeine nxn-Koeffizientenmatrix ist, Nullstellen und Extremas zu bestimmen, ohne dass man die ganzen Terme miteinander ausmultiplizieren und dann mit einem extern  langen Ausdruck arbeiten muss?

Ich würde mich sehr freuen, wenn jemand weiß, ob dies geht, wie das geht und in welche Lektüren die entsprechende Information dazu bieten.

Grüße.

        
Bezug
Bestimmung der Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Do 15.08.2013
Autor: felixf

Moin!

> ich habe folgende Frage:
>  
> gibt es irgendeinen kürzeren Weg (eine Technik) in der
> Mathematik, für Funktionen der Art f:x-->x'Ax, wobei x ein
> n-dimensionaler Vektor, x' ihre Transponierte, und A
> irgendeine nxn-Koeffizientenmatrix ist, Nullstellen und
> Extremas zu bestimmen, ohne dass man die ganzen Terme
> miteinander ausmultiplizieren und dann mit einem extern  
> langen Ausdruck arbeiten muss?

Ueberlege dir erstmal, dass du $A$ durch [mm] $\tfrac{1}{2} [/mm] (A + [mm] A^t)$ [/mm] ersetzen kannst, ohne dass sich etwas an der Funktion aendert. Diese Matrix ist auf jeden Fall symmetrisch.

Wenn $A$ symmetrisch ist, kannst du $A$ so diagonalisieren, dass die Eigenvektoren orthogonal aufeinander stehen und die Laenge 1 haben: die Transformationsmatrix $T$ mit $T A [mm] T^{-1} [/mm] = D$ (Diagonalmatrix) ist dann orthogonal, und es gilt [mm] $T^{-1} [/mm] = [mm] T^t$. [/mm] Damit ist $f(x) = [mm] x^t [/mm] A t = [mm] (x^t T^t) [/mm] T A [mm] T^t [/mm] (T x) = (T [mm] x)^t [/mm] D (T x)$. Ist $y = [mm] (y_1, \dots, y_n) [/mm] = T x$, dann ist $f(x)$ also gleich [mm] $\sum_{i=1}^n d_i y_i^2$, [/mm] wenn [mm] $d_1, \dots, d_n$ [/mm] die Diagonaleintraege von $D$ sind.

Aus $y = T x$ folgt $x = [mm] T^t [/mm] y$, womit du wenn du die Extrema von $g(y) = [mm] y^t [/mm] D y = [mm] \sum_{i=1}^n d_i y_i^2$ [/mm] kennst, daraus direkt die Extrema von $f$ bekommst.

Und die Extrema von $g(y) = [mm] \sum_{i=1}^n d_i y_i^2$ [/mm] bestimmen ueberlass ich jetzt dir :)

> Ich würde mich sehr freuen, wenn jemand weiß, ob dies
> geht, wie das geht und in welche Lektüren die
> entsprechende Information dazu bieten.

In jedem guten Buch oder Skript zur linearen Algebra sollte das drinnenstehen.

LG Felix


Bezug
                
Bezug
Bestimmung der Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Do 15.08.2013
Autor: Cauchy123

Vielen Dank für deine Antwort!

Das ist eine interessante Vorgehensweise! :-)

Ich werde mir noch überlegen, ob das in meinem Fall tatsächlich einen effizienteren Lösungsweg darstellt.

Eine Frage hätte ich dazu aber noch:

Ganz am Anfang zerlegst du die Matrix A in die Summe von zwei Matrizen. Ist die Matrix A auf der rechten und linken Seite die gleiche Matrix oder nicht? Mir ist nicht ganz verständlich, warum du diese Zerlegung machst und später nirgendwo die Matrix At (A transponiert) auftaucht.


Bezug
                        
Bezug
Bestimmung der Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Do 15.08.2013
Autor: felixf

Moin!

> Eine Frage hätte ich dazu aber noch:
>  
> Ganz am Anfang zerlegst du die Matrix A in die Summe von
> zwei Matrizen. Ist die Matrix A auf der rechten und linken
> Seite die gleiche Matrix oder nicht? Mir ist nicht ganz
> verständlich, warum du diese Zerlegung machst und später
> nirgendwo die Matrix At (A transponiert) auftaucht.

Ich mache folgendes:

* Ist $A$ symmetrisch, so kann man gleich mit den Eigenvektoren/Eigenwerten fortfahren.

* Ist $A$ nicht symmetrisch, so kann man $A$ durch [mm] $\tfrac{1}{2} [/mm] (A + [mm] A^t)$ [/mm] ersetzen. In dem Fall ist der Ausdruck der neue Wert von $A$, und die alte Matrix $A$ wird nicht mehr gebraucht.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]