matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungBestimmung der Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Bestimmung der Ableitung
Bestimmung der Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Ableitung: h-Methode
Status: (Frage) beantwortet Status 
Datum: 17:10 So 05.01.2020
Autor: chris_muc

Liebe alle,

ist es möglich die Ableitung einer Funktion f an der Stelle [mm] x_{0} [/mm] über die h-Methode mit den Ansatz
[mm] f´(x_{0})=\limes_{h\rightarrow\infty}\bruch{f(x_{0}-h)-f(x_{0})}{h} [/mm] zu bestimmen?

Meiner Meinung nach ist es nicht möglich, was rechnerisch (vermeintlich) leicht zu zeigen ist. Vorzeichen passt nicht.

Wie sieht eine Begründung geometrisch betrachtet über die Sekantensteigung aus? Kann mir da jemand helfen?

Lieben Dank
Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bestimmung der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 So 05.01.2020
Autor: Gonozal_IX

Hiho,

> ist es möglich die Ableitung einer Funktion f an der
> Stelle [mm]x_{0}[/mm] über die h-Methode mit den Ansatz
> [mm]f´(x_{0})=\limes_{h\rightarrow\infty}\bruch{f(x_{0}-h)-f(x_{0})}{h}[/mm]
> zu bestimmen?

Vorweg: Ich gehe davon aus, dass du [mm] $\lim_{h\to 0}$ [/mm] meinst, ansonsten macht der ganze Ausdruck keinen Sinn.
Das kommt darauf an, was du mit "bestimmen" meinst.
Die so definierte Ableitung hat halt nur das umgekehrte Vorzeichen zur "normalen" Definition. Wenn dir das bewusst ist, kann man die "normale" Ableitung ganz normal berechnen über [mm] $f'_{\text{chris\_muc}}(x_{0}) [/mm]  = [mm] -f'(x_0)$ [/mm]

> Meiner Meinung nach ist es nicht möglich, was rechnerisch
> (vermeintlich) leicht zu zeigen ist. Vorzeichen passt nicht.

Wenn deine Frage war, ob der Wert der Ableitung identisch ist mit der Standarddefinition: Nein, sie unterscheiden sich im Vorzeichen.

> Wie sieht eine Begründung geometrisch betrachtet über die
> Sekantensteigung aus? Kann mir da jemand helfen?

Die Sekante, die da heraus kommt, ist exakt die selbe, wie vorher auch.
Allerdings entspricht die oben definierte Ableitung dann eben nicht mehr der Sekantensteigung, sondern definitionsgemäß der negativen Sekantensteigung.
Das sieht man aber besser, wenn man obiges in die [mm] $x-x_0$-Form [/mm] umformt.

D.h. deine Definition ist weniger "natürlich" und geometrisch nicht mehr ganz so schön.

Gruß,
Gono

Bezug
                
Bezug
Bestimmung der Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 So 05.01.2020
Autor: chris_muc

Entschuldige, mein Fehler. Ok, verstehe ich! Danke


Wenn ich mir jedoch geometrisch meine Sekante durch die Punkte in [mm] x_{0} [/mm] und [mm] x_{0}+h [/mm] im Vergleich zu der Sekante durch [mm] x_{0} [/mm] und [mm] x_{0}-h [/mm] vorstelle, dann laufen doch beide durch den Grenzwertprozess für [mm] h\rightarrow\ [/mm] 0 auf die gleiche Tangente. Wieso stimmen sie dann im Vorzeichen nicht überein?

Viele Grüße

Bezug
                        
Bezug
Bestimmung der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 So 05.01.2020
Autor: Gonozal_IX

Hiho,

> Wenn ich mir jedoch geometrisch meine Sekante durch die
> Punkte in [mm]x_{0}[/mm] und [mm]x_{0}+h[/mm] im Vergleich zu der Sekante
> durch [mm]x_{0}[/mm] und [mm]x_{0}-h[/mm] vorstelle, dann laufen doch beide
> durch den Grenzwertprozess für [mm]h\rightarrow\[/mm] 0 auf die
> gleiche Tangente.

Korrekt, darum schrieb ich ja: Geometrisch erhältst du die selbe Sekanten (und damit im Grenzprozess die selbe Tangente).

> Wieso stimmen sie dann im Vorzeichen nicht überein?

Weil der "normale" Ausdruck [mm] $\frac{f(x_0 + h) - f(x)}{h}$ [/mm] ja gar nicht die Sekante selbst beschreibt, sondern den Anstieg der Sekanten!

Und das ist bei deiner Definition eben nicht mehr der Fall.
Deine Definition [mm] $\frac{f(x_0 - h) - f(x)}{h}$ [/mm] beschreibt die negative Sekantensteigung. D.h. im Grenzprozess erhältst du dann eben die negative Tangentensteigung.

Gruß,
Gono



Bezug
                                
Bezug
Bestimmung der Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 So 05.01.2020
Autor: chris_muc

Ahhh, das macht Sinn! :)

Lieben Dank!

Bezug
                        
Bezug
Bestimmung der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Di 07.01.2020
Autor: fred97

[mm] $\limes_{h\rightarrow 0}\bruch{f(x_{0}-h)-f(x_{0})}{h}=-\limes_{h\rightarrow 0}\bruch{f(x_{0}-h)-f(x_{0})}{-h}=-f'(x_0).$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]