matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBestimmung Polynom im GF2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Bestimmung Polynom im GF2
Bestimmung Polynom im GF2 < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Polynom im GF2: Erklärung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:07 Fr 06.02.2009
Autor: nicki87

Aufgabe
a) Bestimmen Sie Polynome q,r €R[x] so dass
[mm] x^7+x^5+x^3+1=(x^3+x+1)*q+r [/mm] mit Grad (r)<3

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo ich habe folgendes Problem. Ich verstehe nicht so ganz was ich mir genau unter einem Ideal vorstellen soll.
Außerdem haben wir diese Woche in den Hausaufgaben folgende Aufagbe bekommen.

b) Lösen Sie die Aufgabe a) für Polynome q,r€GF[2].

Ich habe a9 durch eine Polynomdivison gelöst. das war kein Problem.

bei b habe ich es genauso gemacht. wenn ich aber die Probe mache, dann komm ich nicht auf [mm] x^7+x^5+x^3+1. [/mm] Was muss ich bei der Aufgabe beachten?

Und bei der nächsten Aufgabe sollen wir das erzeugte Ideal von R[x] bestimmen. Könnt ihr bitte nochmal erklären was das bedeutet?

Wenn ihr mir helfen könntet wäre  ich sehr dankbar!

        
Bezug
Bestimmung Polynom im GF2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:33 Sa 07.02.2009
Autor: angela.h.b.


> a) Bestimmen Sie Polynome q,r €R[x] so dass
> [mm]x^7+x^5+x^3+1=(x^3+x+1)*q+r[/mm] mit Grad (r)<3
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Hallo ich habe folgendes Problem. Ich verstehe nicht so
> ganz was ich mir genau unter einem Ideal vorstellen soll.
> Außerdem haben wir diese Woche in den Hausaufgaben folgende
> Aufagbe bekommen.
>
> b) Lösen Sie die Aufgabe a) für Polynome q,r€GF[2].
>  
> Ich habe a9 durch eine Polynomdivison gelöst. das war kein
> Problem.
>
> bei b habe ich es genauso gemacht. wenn ich aber die Probe
> mache, dann komm ich nicht auf [mm]x^7+x^5+x^3+1.[/mm] Was muss ich
> bei der Aufgabe beachten?

Hallo,

[willkommenmr].

Rechne mal vor, was Du getan hast. Vielleicht hängt's nur an einer Kleinigkeit.
man muß das sehen.

>
> Und bei der nächsten Aufgabe sollen wir das erzeugte Ideal
> von R[x] bestimmen. Könnt ihr bitte nochmal erklären was
> das bedeutet?

Wie lautet die Aufgabe genau?

Gruß v. Angela

>  
> Wenn ihr mir helfen könntet wäre  ich sehr dankbar!


Bezug
                
Bezug
Bestimmung Polynom im GF2: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:14 Sa 07.02.2009
Autor: nicki87

Hallo!

Also bei der a) habe ich die Polynomdivison gemacht und habe erhalten:

[mm] x^7+x^5+x^3+1:(x^3+x+1)=x^4-x+1+x^2/(x^3+x+1). [/mm]

Da ich in der ganzen erchnung keine anderen zahlen außer einsen und nullen hatte muss das auch die lösung für b sein. Ist das so wirklich? ich muss doch nur darauf achten, wenn meine addition >1 ist, dass sie null oder eins ist.

ich habe nämlich mit meiner probe rausbekommen, das ich mich verrechnet hatte.  denn wenn meine vermutung von oben stimmt dann ist die aufgabe gelöst.

nun zur dritten aufgabe:
die lautet:
Bestimmen sie die Polynome, welches das von  
[mm] x^7+x^5+x^3+1 [/mm] und [mm] x^3+x+1 [/mm] erzeugte Ideal von R[x] erzeugt.

Ich weiß leider nicht, was das erzeugende Ideal genau bedeutet....

LG Nicole

Bezug
                        
Bezug
Bestimmung Polynom im GF2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Sa 07.02.2009
Autor: angela.h.b.


> ich habe nämlich mit meiner probe rausbekommen, das ich
> mich verrechnet hatte.

Hallo,

kannst Du diese Probe mal vorrechnen? Ich weiß nicht recht, was Du meinst.

Gruß v. Angela

Bezug
        
Bezug
Bestimmung Polynom im GF2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 So 08.02.2009
Autor: nicki87

Hallo!

ich habe für [mm] q=(x^4-x+1) [/mm] und r= [mm] x^2/(x^3+x+1) [/mm] rausbekommen. Dass setze ich in meine Gleichung von oben ein und erhalte:
[mm] x^7+x^5+x^3+1=(x^3+x+1)*(x^4-x+1)+x^2/(x^3+x+1)= (x^3+x+1)*(x^4-x+1)+x^2= [/mm]
[mm] x^7+x^5+x^4-x^4-x^2-x+x^3+x+1+x^2=x^7+x^5+x^3+1. [/mm]

Das habe ich mit Probe gemeint. Da kommt ja auch das richtige raus.
Bei der Polynomdivision und bei der Proberechnung habe ich nur mit Elementen des GF2 gerechnet. Ist deswegen mein ergebnis was ich im "normalen" Ring rausbekommen habe gleich dem des GF2?

Liebe Grüße Nicki

Bezug
                
Bezug
Bestimmung Polynom im GF2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 So 08.02.2009
Autor: angela.h.b.


> Hallo!
>  
> ich habe für [mm]q=(x^4-x+1)[/mm] und r= [mm]x^2/(x^3+x+1)[/mm] rausbekommen.

Hallo,

Du meinst sicher [mm] r=x^2. [/mm]


> Dass setze ich in meine Gleichung von oben ein und
> erhalte:
>  [mm]x^7+x^5+x^3+1=(x^3+x+1)*(x^4-x+1)+x^2/(x^3+x+1)= (x^3+x+1)*(x^4-x+1)+x^2=[/mm]
>  
> [mm]x^7+x^5+x^4-x^4-x^2-x+x^3+x+1+x^2=x^7+x^5+x^3+1.[/mm]
>  
> Das habe ich mit Probe gemeint. Da kommt ja auch das
> richtige raus.
>  Bei der Polynomdivision und bei der Proberechnung habe ich
> nur mit Elementen des GF2 gerechnet. Ist deswegen mein
> ergebnis was ich im "normalen" Ring rausbekommen habe
> gleich dem des GF2?

Ja, so würde ich das sehen.

Du kannst natürlich überall die -1 als 1 schreiben, falls vielleicht nur 0 und 1 als Koeffizienten vorkommen sollen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]