matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeBestimmung Flächeninhalt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Bestimmung Flächeninhalt
Bestimmung Flächeninhalt < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Mo 27.04.2015
Autor: Ferdie

Aufgabe
Gegeben ist die Funktion f(x) = [mm] 1/6x^3- [/mm] 3/2x

Der Punkt P liegt im 2.Quadranten auf der Funktion. Die Gerade OP, die x-Achse und eine Parallele der y-Achse bilden eine Dreieck. Untersuchen sie ob es einen Wert für P gibt bei dem der Flächeninhalt extrem ist. Und bestimmen sie gegebenfalls die Art des Extremas

Die Formel für die Fläche eines Dreiecks lautet ja: 1/2 * g * h

Ich habe mir jetzt überlegt g entspricht ja in diesem Fall dem x-Wert meinem Punktes und h dem f(x) Wert von P

Also müsste die Gleichung doch lauten

1/2 * x * [mm] (1/6x^3 [/mm] - 3/2 x) = A

1/12 [mm] x^4 [/mm] - 3/4 [mm] x^2 [/mm] = A

Um Extremwert zu bestimmen. 1.Ableitung gleich null


4/12 [mm] x^3 [/mm] -6/8 x = 0

x= 0 oder 4/12 [mm] x^2 [/mm] - 6/8 = 0

[mm] x^2 [/mm] = 72/32

Stimmt meine Überlegung bis hierhin


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Mo 27.04.2015
Autor: M.Rex

Hallo und [willkommenmr]

> Gegeben ist die Funktion f(x) = [mm]1/6x^3-[/mm] 3/2x

>

> Der Punkt P liegt im 2.Quadranten auf der Funktion. Die
> Gerade OP, die x-Achse und eine Parallele der y-Achse
> bilden eine Dreieck. Untersuchen sie ob es einen Wert für
> P gibt bei dem der Flächeninhalt extrem ist. Und bestimmen
> sie gegebenfalls die Art des Extremas
> Die Formel für die Fläche eines Dreiecks lautet ja: 1/2
> * g * h

>

> Ich habe mir jetzt überlegt g entspricht ja in diesem Fall
> dem x-Wert meinem Punktes und h dem f(x) Wert von P

>

> Also müsste die Gleichung doch lauten

>

> 1/2 * x * [mm](1/6x^3[/mm] - 3/2 x) = A

>

> 1/12 [mm]x^4[/mm] - 3/4 [mm]x^2[/mm] = A

>

> Um Extremwert zu bestimmen. 1.Ableitung gleich null

>
>

> 4/12 [mm]x^3[/mm] -6/8 x = 0

>

> x= 0 oder 4/12 [mm]x^2[/mm] - 6/8 = 0

>

> [mm]x^2[/mm] = 72/32

>

> Stimmt meine Überlegung bis hierhin

EDIT: Das sieht soweit gut aus, auf den kleinen Rechenfehler hat Leduart ja inzwischen hingewiesen, das Prinzip ist aber korrekt.

Marius

Bezug
                
Bezug
Bestimmung Flächeninhalt: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 16:01 Mo 27.04.2015
Autor: leduart

Hallo
die Überlegungen stimmen, aber bei der auswertung ist ein Fehler. in A' nicht 6/8 *x sondern 6/4
dadurch ändert sich das Ergebnis!
Gruß leduart

Bezug
                        
Bezug
Bestimmung Flächeninhalt: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 16:06 Mo 27.04.2015
Autor: M.Rex

Hallo leduart

Danke für den Hinweis auf den kleinen Fehler, da hab ich mich durch das "schöne glatte" Ergebnis für den gesuchten Punkt blenden lassen.

Marius

Bezug
                
Bezug
Bestimmung Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:14 Mo 27.04.2015
Autor: Ferdie

Danke für den Hinweis und die Hilfe

Schönen Tag noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]