matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBestimmung Abbildungsmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Bestimmung Abbildungsmatrix
Bestimmung Abbildungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Abbildungsmatrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:40 Mi 12.05.2010
Autor: bAbUm

Guten Tag.

Ich habe eine Aufgabe zu lösen, stehe aber völlig auf dem Schlauch. Das Web etc hilft mir sonst auch nicht mehr weiter. Ich hoffe mir kann jemand weiterhelfen und mir erklären was  zu tun ist (und wieso).

Gegeben sind 3 vektoren: [mm] b_1 [/mm] = [mm] \pmat{ 1, & 0, & 1}^T [/mm] ; [mm] b_2 [/mm] = [mm] \pmat{ -3, & 2, & 1}^T [/mm] ; [mm] b_3 [/mm] = [mm] \pmat{ 0, & 4, & 1}^T [/mm]

Aufgabe: Bestimme die Abbildungsmatrix der linearen Abblildung [mm] \delta [/mm] mit
[mm] \delta(e_1)=b_1 [/mm] ; [mm] \delta(e_2)=b_2 [/mm] ; [mm] \delta(e_3)=b_3 [/mm]
[mm] (e_1 [/mm] ,... sind die koordinateneinheitsvektoren)

Vieeelen Dank schonmal von mir!
Gruß babum

        
Bezug
Bestimmung Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Mi 12.05.2010
Autor: wieschoo


> Guten Tag.
>  
> Ich habe eine Aufgabe zu lösen, stehe aber völlig auf dem
> Schlauch. Das Web etc hilft mir sonst auch nicht mehr
> weiter. Ich hoffe mir kann jemand weiterhelfen und mir
> erklären was  zu tun ist (und wieso).
>  
> Gegeben sind 3 vektoren: [mm]b_1[/mm] = [mm]\pmat{ 1, & 0, & 1}^T[/mm] ; [mm]b_2[/mm]
> = [mm]\pmat{ -3, & 2, & 1}^T[/mm] ; [mm]b_3[/mm] = [mm]\pmat{ 0, & 4, & 1}^T[/mm]
>
> Aufgabe: Bestimme die Abbildungsmatrix der linearen
> Abblildung [mm]\delta[/mm] mit
>  [mm]\delta(e_1)=b_1[/mm] ; [mm]\delta(e_2)=b_2[/mm] ; [mm]\delta(e_3)=b_3[/mm]
>  [mm](e_1[/mm] ,... sind die koordinateneinheitsvektoren)
>  
> Vieeelen Dank schonmal von mir!
>  Gruß babum

Hallo,

du suchts eine (lineare) Abbildung [mm] $\delta [/mm] : [mm] \IR^3 \to \IR^3$, [/mm] die die Einheitsvektoren [mm] $e_1$ [/mm] auf [mm] $b_i$ [/mm] abbildet. In der Matrixschreibweise also.
[m]\pmat{ a & b&c \\ d & e&f\\g&h&i}\cdot e_i=b_i[/m]

Die Matrix ist jetzt gesucht. Wenn du weißt was passiert, wenn man die Abbildungsmatrix mit [mm] $e_i$ [/mm] multipliziert. Ist der Rest trivial.


Bezug
                
Bezug
Bestimmung Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Mi 12.05.2010
Autor: bAbUm


> Hallo,
>  
> du suchts eine (lineare) Abbildung [mm]\delta : \IR^3 \to \IR^3[/mm],
> die die Einheitsvektoren [mm]e_1[/mm] auf [mm]b_i[/mm] abbildet. In der
> Matrixschreibweise also.
>  [m]\pmat{ a & b&c \\ d & e&f\\g&h&i}\cdot e_i=b_i[/m]
>  
> Die Matrix ist jetzt gesucht. Wenn du weißt was passiert,
> wenn man die Abbildungsmatrix mit [mm]e_i[/mm] multipliziert. Ist
> der Rest trivial.

Mal sehen ob ich es richtig verstanden habe. Wenn man eine matrix mit dem EV multipliziert zb [mm] e_1 [/mm]  kommt als Ergebnis das Gleiche raus wie in der ersten Spalte der Matrix.

Demnach müsste dann die Abbildungsmatrix
[mm] \pmat{ 1 & -3 & 0 \\ 0 & 2 &-4 \\ 1&1&1 } [/mm] lauten.
Stimmt das?

Bezug
                        
Bezug
Bestimmung Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Mi 12.05.2010
Autor: fred97


> > Hallo,
>  >  
> > du suchts eine (lineare) Abbildung [mm]\delta : \IR^3 \to \IR^3[/mm],
> > die die Einheitsvektoren [mm]e_1[/mm] auf [mm]b_i[/mm] abbildet. In der
> > Matrixschreibweise also.
>  >  [m]\pmat{ a & b&c \\ d & e&f\\g&h&i}\cdot e_i=b_i[/m]
>  >  
> > Die Matrix ist jetzt gesucht. Wenn du weißt was passiert,
> > wenn man die Abbildungsmatrix mit [mm]e_i[/mm] multipliziert. Ist
> > der Rest trivial.
>  
> Mal sehen ob ich es richtig verstanden habe. Wenn man eine
> matrix mit dem EV multipliziert zb [mm]e_1[/mm]  kommt als Ergebnis
> das Gleiche raus wie in der ersten Spalte der Matrix.
>  
> Demnach müsste dann die Abbildungsmatrix
> [mm]\pmat{ 1 & -3 & 0 \\ 0 & 2 &-4 \\ 1&1&1 }[/mm] lauten.
>  Stimmt das?


Nicht ganz. Du hast Dich sicher verschrieben. Richtig:

           [mm]\pmat{ 1 & -3 & 0 \\ 0 & 2 &4 \\ 1&1&1 }[/mm]

FRED

Bezug
                                
Bezug
Bestimmung Abbildungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 12.05.2010
Autor: bAbUm

Ja ok.
Ich habe den Wald vor lauter Bäumen nciht gesehen. ;)  Das war ja einfach.
Ich danke Euch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]