matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBestimmtes Integral berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Bestimmtes Integral berechnen
Bestimmtes Integral berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmtes Integral berechnen: Integration
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 06.02.2008
Autor: Imperator_Serhat

Aufgabe
Berechnen Sie das bestimmte Integral
[mm]\integral^{1}_{0}{\bruch{18x^{3}}{\wurzel{6x^{2}+3}}dx}[/mm]

Substituieren Sie den Radikanten.

Hallo Leute,

Hier habe ich großes Problem. Ich komme überhaupt nicht weiter.
Also Ich verwende die Substitutionsmethode und ersetze den Radikanten:

[mm]u=6x^{2}+3[/mm]

[mm]\bruch{du}{dx}=12x[/mm]

Dann forme ich nach dx um:

[mm]dx=\bruch{du}{12x}[/mm]

Setze nun u und dx in das Integral ein:

[mm]\integral^{1}_{0}{\bruch{18x^{3}}{\wurzel{u}}\bruch{du}{12x}}[/mm]
Kürze x gegen [mm] x^3 [/mm] und 18 gegen 12 und ziehe die multiplikativen konstanten vor das integral
[mm]\bruch{3}{2}\integral^{1}_{0}{\bruch{x^{2}}{\wurzel{u}}du}[/mm]

Und ab da weiss ich nun überhaupt nicht mehr, was Sache ist.
Frage 1: Ist der Gedanke bis hier hin richtig?
Frage 2: Ist Substitutuion überhaupt der richtige weg?
Frage 3: Wie geht es weiter?

Vielen Dank für die Hilfe im Voraus

        
Bezug
Bestimmtes Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 06.02.2008
Autor: schachuzipus

Hallo Serhat,


> Berechnen Sie das bestimmte Integral
>  [mm]\integral^{1}_{0}{\bruch{18x^{3}}{\wurzel{6x^{2}+3}}dx}[/mm]
>  
> Substituieren Sie den Radikanten.
>  Hallo Leute,
>
> Hier habe ich großes Problem. Ich komme überhaupt nicht
> weiter.
>  Also Ich verwende die Substitutionsmethode und ersetze den
> Radikanten:
>  
> [mm]u=6x^{2}+3[/mm]
>  
> [mm]\bruch{du}{dx}=12x[/mm]
>  
> Dann forme ich nach dx um:
>  
> [mm]dx=\bruch{du}{12x}[/mm]
>  
> Setze nun u und dx in das Integral ein:
>  
> [mm]\integral^{1}_{0}{\bruch{18x^{3}}{\wurzel{u}}\bruch{du}{12x}}[/mm]
>  Kürze x gegen [mm]x^3[/mm] und 18 gegen 12 und ziehe die
> multiplikativen konstanten vor das integral
>  
> [mm]\bruch{3}{2}\integral^{1}_{0}{\bruch{x^{2}}{\wurzel{u}}du}[/mm] [daumenhoch]

fast perfekt bis hierhin - du musst an die Grenzen denken, entweder substituierst du die mit oder löst zuerst das unbestimmte Integral ohne Grenzen, resubstituierst dann und nimmst die alten Grenzen

Zur Umrechnung der Grenzen: die untere war x=0, das gibt mit der Substitution [mm] u=6x^2+3, [/mm] also [mm] u=6\cdot{}0^2+3=3 [/mm]

Analog für die obere Grenze...

>  
> Und ab da weiss ich nun überhaupt nicht mehr, was Sache
> ist.
>  Frage 1: Ist der Gedanke bis hier hin richtig? [ok]
>  Frage 2: Ist Substitutuion überhaupt der richtige weg? [ok]
>  Frage 3: Wie geht es weiter?

Ich mach's ohne die Grenzen, so dass du am Schluss resubstituieren musst und die alten Grenzen nehmen musst...

Mit der Substitution [mm] $u:=6x^2+3$ [/mm] ist doch, wenn du's umstellst: [mm] $x^2=\frac{u-3}{6}$ [/mm]

Also hast du das Integral [mm] $\bruch{3}{2}\integral{\bruch{x^{2}}{\wurzel{u}}du}=\bruch{3}{2}\integral{\bruch{\bruch{u-3}{6}}{\wurzel{u}}du}=\bruch{1}{4}\integral{\bruch{u-3}{\wurzel{u}}du}$ [/mm]

Nun das Integral als Summe zweier Integrale schreiben, die du bestimmt locker lösen kannst.


> Vielen Dank für die Hilfe im Voraus


LG

schachuzipus

Bezug
                
Bezug
Bestimmtes Integral berechnen: Substitution
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Do 07.02.2008
Autor: Imperator_Serhat

Hallo Schauzipus,

danke für die Idee, genau die Info hat mir gefehlt gehabt.
Nun der vollständigkeitshalbe der Rest meiner Lösung:

[mm]\bruch{1}{4}(\integral{\bruch{u}{\wurzel{u}}}-3\integral{\bruch{1}{\wurzel{u}}})[/mm]

[mm]=\bruch{1}{4}(\integral{\bruch{\wurzel{u}\wurzel{u}}{\wurzel{u}}}-3\integral{\bruch{1}{\wurzel{u}}})[/mm]

[mm]=\bruch{1}{4}(\integral{\wurzel{u}}-3\integral{\bruch{1}{\wurzel{u}}})[/mm]

[mm]=\bruch{1}{4}(\bruch{2}{3}x^{\bruch{3}{2}}-3\cdot 2\cdot \wurzel{u})[/mm]

[mm]=\bruch{1}{4}(\bruch{2}{3}\wurzel{u}\cdot u - 6\wurzel{u})[/mm]

[mm]=\bruch{1}{6}\wurzel{u}\cdot u-\bruch{3}{2}\wurzel{u}[/mm]

u wieder rücksubstituiert, ein wenig umgeformt und zusammengefasst:

[mm]=(x^{2}-1)\wurzel{6x^{2}+3}[/mm]

Jetzt habe ich keine Lust mehr zu tippen, aber man müsste nur noch die Grenzen einsetzen und das Integral ausrechnen und FERTIG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]