matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBestimmte lineare Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Bestimmte lineare Abbildungen
Bestimmte lineare Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmte lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Mi 05.01.2011
Autor: Okus

Aufgabe
Man gebe alle linearen Abbildungen [mm] \pi [/mm] : [mm] \IR^{2} \to \IR^{2} [/mm] an mit den Eigenschaften [mm] (1,0)\pi=(1,0) [/mm] und [mm] \pi^{2}=id_{\IR^{2}}. [/mm]

Meine Überlegung zu dieser Aufgabe ist, dass man die Gelichheit zweier Mengen nachweist. Dafür ist die eine Menge die Menge aller Linearen Abbildungen mit den gesuchten Eigenschaften und die andere Menge die Lösungsmenge. Durch Mengeninklusion erhält man dann, dass sie gleich sind. Soviel zur Überlegung, jedoch brauch ich dafür die Lösungsmenge. Ich müsste also von hinten rechnen und komme einfach nicht auf die Lösung.

Vielen Dank,

Okus

        
Bezug
Bestimmte lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mi 05.01.2011
Autor: Gonozal_IX

Hallo Okus,

was hindert dich daran [mm] \pi [/mm] als Matrix zu schreiben und die 4 unbekannten einfach zu bestimmen?

MFG;
Gono.

Bezug
                
Bezug
Bestimmte lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Mi 05.01.2011
Autor: Okus

Ich weiß nicht recht was ich mit deinem Tipp anfangen soll. Welche 4 Unbekannten meinst du?

Bezug
                        
Bezug
Bestimmte lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mi 05.01.2011
Autor: Gonozal_IX

Na offensichtlich kannst du [mm] \pi [/mm] schreiben als:

[mm] $\pi [/mm] = [mm] \pmat{ \pi_1 & \pi_2 \\ \pi_3 & \pi_4 }$ [/mm]

Und nun losrechnen.....

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]