matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBestimmte Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Bestimmte Integration
Bestimmte Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmte Integration: Erklärung?
Status: (Frage) beantwortet Status 
Datum: 00:02 Di 20.09.2011
Autor: Marv

Aufgabe
Integriere: [mm] \bruch{1}{x^{2}+4} [/mm]

Hallo zusammen, ich wusste nicht genau wohin ich die Frage posten sollte, hoffe das passt jetzt hier rein ;)

Also die Aufgabe stammt nicht aus einem Buch, sondern ist ein Rechenschritt einer umfassenderen Aufgabe, die ich aber nicht ganz aufschreiben wollte.

Ich bin jetzt an dem Punkt angekommen wo ich den oben stehenden  Bruch integrieren muss, weiß allerdings nicht wie das geht. Wäre im Nenner kein Exponent beim x könnte man ja einfach jetzt den Logarithmus dahin schreiben... Bei x² ist das ja nicht so!
Ich weiß, dass das die Lösung ist:

[mm] \bruch{1}{2}\*tan^{-1}(\bruch{x}{2}) [/mm] + constant

Aber wie kommt man dadrauf? Gibt es einen Beweis den man auch verstehen kann :P oder einfach eine Regel wie man dann vorgeht wenn im Nenner ein x² ist?

Es handelt sich hier um Unistoff allerdings hatten wir das auch schon kurz in der Schule angeschnitten desswegen habe ich es noch in diesen Bereich des Forums gepostet!

Würde mich sehr über eine Antwort freuen!

MfG

        
Bezug
Bestimmte Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Di 20.09.2011
Autor: kushkush

Hallo



substituiere :

                    $x:= 2tan(u)$



Gruss
kushkush

Bezug
        
Bezug
Bestimmte Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 06:54 Di 20.09.2011
Autor: fred97

1. Eine Stammfunktion von  $ [mm] \bruch{1}{x^{2}+1} [/mm] $ ist die Funktion arctan(x).

2.  $ [mm] \bruch{1}{x^{2}+4}= \bruch{1}{4}* \bruch{1}{(\bruch{x}{2})^{2}+1}$ [/mm]

3. Substitution  t=x/2

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]