matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBestimmt von Extrempunkten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Bestimmt von Extrempunkten
Bestimmt von Extrempunkten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmt von Extrempunkten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:32 Fr 12.02.2016
Autor: Canibus

Aufgabe
Stationäre Punkte

Untersuchen Sie die folgenden Funktionen im Inneren ihres natürlichen Definitionsbereiches auf Extremwerte und Sattelpunkte:

d) z = [mm] 3x^{2}y [/mm] + [mm] 4y^{3} [/mm] - [mm] 3x^{2} [/mm] - [mm] 12y^{2} [/mm] + 1

[mm] z_{x} [/mm] = 6xy - 6x
[mm] z_{y} [/mm] = [mm] 3x^{2} [/mm] + [mm] 12y^{2} [/mm] - 24y
[mm] z_{xx} [/mm] = 6y-6
[mm] z_{xy} [/mm] = 6y
[mm] z_{yx} [/mm] = 6x
[mm] z_{yy} [/mm] = 24y - 24

z'' = [mm] \pmat{ 6y-6 & 6y \\ 6x & 24y-24 } [/mm]

Notw. Bedingung:

[mm] z_{x} [/mm] = 0
6xy - 6x = 0
x(6y-6) = 0
x = 0 v 6y-6 = 0
x = 0 v y = 1

Für x = 0:

[mm] z_{y} [/mm] = 0
[mm] 12y^{2} [/mm] - 24y = 0
y(12y-24) = 0
y = 0 v 12y - 24 = 0
y = 0 v y = 2

Für y = 1

[mm] z_{y} [/mm] = 0
[mm] 3x^{2} [/mm] - 12 = 0
[mm] x^{2} [/mm] - 4 = 0
[mm] x^{2} [/mm] = 4
x = 2 v x = -2

f''(0,0) = [mm] \pmat{ -6 & 0 \\ 0 & -24 } [/mm]
f''(0,2) = [mm] \pmat{ 6 & 12 \\ 0 & 24 } [/mm]
f''(2,1) = [mm] \pmat{ 0 & 6 \\ 12 & 0 } [/mm]
f''(-2,1) = [mm] \pmat{ 0 & 6 \\ -12 & 0 } [/mm]

Ich stehe jetzt gerade vor dem Problem, die Definitheit der Matrizen zu bestimmten.
Die letzten drei Matrizen sind nicht symmetrisch. Wie bestimme ich hier die Definitheit, um daraus Schlussfolgerungen auf die Art des stationären Punktes schließen zu können?

Ich danke euch im Voraus schon einmal für eure Hilfe!

Mit freundlichen Grüßen,
Canibus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmt von Extrempunkten: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Fr 12.02.2016
Autor: Canibus

Eine Matrix ist A ist genau dann positiv definit, wenn die symmetrische Matrix A + [mm] A^{T} [/mm] positiv definit ist.

Damit lässt sich das Problem der Definitheit unsymmetrischer Matrizen lösen!

Bezug
                
Bezug
Bestimmt von Extrempunkten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:44 Fr 12.02.2016
Autor: Jule2

Über die Eigenwerte gehts auch!!

Bezug
        
Bezug
Bestimmt von Extrempunkten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Fr 12.02.2016
Autor: fred97


> Stationäre Punkte
>  
> Untersuchen Sie die folgenden Funktionen im Inneren ihres
> natürlichen Definitionsbereiches auf Extremwerte und
> Sattelpunkte:
>  
> d) z = [mm]3x^{2}y[/mm] + [mm]4y^{3}[/mm] - [mm]3x^{2}[/mm] - [mm]12y^{2}[/mm] + 1
>  [mm]z_{x}[/mm] = 6xy - 6x
>  [mm]z_{y}[/mm] = [mm]3x^{2}[/mm] + [mm]12y^{2}[/mm] - 24y
>  [mm]z_{xx}[/mm] = 6y-6
>  [mm]z_{xy}[/mm] = 6y
>  [mm]z_{yx}[/mm] = 6x
>  [mm]z_{yy}[/mm] = 24y - 24
>  
> z'' = [mm]\pmat{ 6y-6 & 6y \\ 6x & 24y-24 }[/mm]
>  
> Notw. Bedingung:
>  
> [mm]z_{x}[/mm] = 0
>  6xy - 6x = 0
>  x(6y-6) = 0
>  x = 0 v 6y-6 = 0
>  x = 0 v y = 1
>  
> Für x = 0:
>  
> [mm]z_{y}[/mm] = 0
>  [mm]12y^{2}[/mm] - 24y = 0
>  y(12y-24) = 0
>  y = 0 v 12y - 24 = 0
>  y = 0 v y = 2
>  
> Für y = 1
>  
> [mm]z_{y}[/mm] = 0
>  [mm]3x^{2}[/mm] - 12 = 0
>  [mm]x^{2}[/mm] - 4 = 0
>  [mm]x^{2}[/mm] = 4
>  x = 2 v x = -2
>  
> f''(0,0) = [mm]\pmat{ -6 & 0 \\ 0 & -24 }[/mm]
>  f''(0,2) = [mm]\pmat{ 6 & 12 \\ 0 & 24 }[/mm]
>  
> f''(2,1) = [mm]\pmat{ 0 & 6 \\ 12 & 0 }[/mm]
>  f''(-2,1) = [mm]\pmat{ 0 & 6 \\ -12 & 0 }[/mm]
>  
> Ich stehe jetzt gerade vor dem Problem, die Definitheit der
> Matrizen zu bestimmten.
> Die letzten drei Matrizen sind nicht symmetrisch.




Dann hast Du Dich irgendwo verrechnet. Die Funktion z ist 2 mal stetig differenzierbar,  somit ist die Hessematrix in jedem Punkt symmetrisch

Fred






Wie

> bestimme ich hier die Definitheit, um daraus
> Schlussfolgerungen auf die Art des stationären Punktes
> schließen zu können?
>  
> Ich danke euch im Voraus schon einmal für eure Hilfe!
>  
> Mit freundlichen Grüßen,
>  Canibus
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]