matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBestimmen von Grenzwerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Bestimmen von Grenzwerten
Bestimmen von Grenzwerten < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen von Grenzwerten: Problem: exakte Lösung
Status: (Frage) beantwortet Status 
Datum: 18:23 Do 23.11.2006
Autor: Daniliesing

Aufgabe
Bestimmen Sie die Grenzwerte der unten definierten Folgen:

(a) [mm] x_{n} [/mm] = [mm] \bruch{1}{n^{2}} [/mm] + [mm] \bruch{2}{n^{2}} [/mm] + ... + [mm] \bruch{n}{n^{2}} [/mm]

(b) [mm] x_{n} [/mm] = [mm] \bruch{2^{n}}{n!} [/mm]

(c) [mm] x_{n} [/mm] = [mm] \bruch{n!}{n^{n}} [/mm]

(d) [mm] x_{n} [/mm] = [mm] \bruch{(n+1)^3 - (n+2)^3}{(n+3)^2} [/mm]

(e) [mm] x_{n} [/mm] = [mm] \bruch{1 + 2n + 3*2^n + 4*3^n}{5 + 6n + 7*2^n + 8*3^n} [/mm]

Also mein Problem bei der Aufgabe ist, dass ich zwar bei allen Folgen die Grenzwerte bestimmen kann, aber ich soll dies ganz eindeutig über einen Rechnweg tun. Ich bekomme es aber nur durch einsetzten von Zahlen oder einfach durch Nachdenken heraus. Erstmal habe ich also versucht die Gleichungen irgendwie umzuformen, bin aber dabei nie zum Ergebnis gekommen. Hier meine Ansätze.

zu a:

[mm] x_{n} [/mm] = [mm] \bruch{1}{n^{2}} [/mm] + [mm] \bruch{2}{n^{2}} [/mm] + ... + [mm] \bruch{n}{n^{2}} [/mm] wenn dies gilt, dann müsste auch dies gelten:

[mm] \bruch{1}{n^{2}} [/mm] + [mm] \bruch{2}{n^{2}} [/mm] + ... + [mm] \bruch{1}{n} [/mm]

Jeder der einzelnen Summanden geht ja eindeutig gegen null, was wir auch schon in der Vorlesung bewiesen haben, das ist also nicht mehr nötig. bloß was passiert, wenn man in diesem Fall alle Summanden, die gegen null gehen addiert? Wenn ich mich nicht vertan habe müsste der Grenzwert 0,5 sein, aber wie ich das noch weiter zeigen kann, weiß ich wirklich nicht.


zu b: Da habe ich mir einfach gedacht, dass folgendes gilt.

[mm] x_{n} [/mm] = [mm] \bruch{2^{n}}{n!} [/mm] = [mm] \bruch{2*2*...*2}{1*2*...*(n-1)*n} [/mm]

Eigentlich finde ich es ja offensichtlich, dass der nenner viel scheller gegen unendlich strebt als der Zähler, aber wieder ist mir nicht klar, wie sich das eindeutig zeigen lässt. Hier müsste der Grenzwert demnach null sei.

zu c: Auch hier habe ich umgeschrieben:

(c) [mm] x_{n} [/mm] = [mm] \bruch{n!}{2n^{n}} [/mm] = [mm] \bruch{1*...*(n-1)*n}{n*n*n...*n} [/mm]

Hier müsste die Lösung ebenfalls null sein, aber das gleiche Problem wie immer. man könnte hier natürlich noch ein n rauskürzen, so dass die Anzahl der n im Nenner nurnoch n-1 wäre und im Zähler n-1 der letzte Faktor wäre.

zu d: Hier habe ich erstmal die Klammern entfernt und versucht zusammenzufassen:

[mm] x_{n} [/mm] = [mm] \bruch{(n+1)^3 - (n+2)^3}{(n+3)^2} [/mm]
[mm] x_{n} [/mm] = [mm] \bruch{n^3 + 3n^2 + 3n + 1 - n^3 - 6n^2 - 12n - 8}{(n+3)^2} [/mm]
[mm] x_{n} [/mm] = [mm] \bruch{-3n^2 - 9n - 7}{(n+3)^2} [/mm]

Nu sieht man ja theoretisch schon, dass der Grezwert -3 sein müsste, wenn ich mich nicht verrechnet habe, aber der Lösungeg oder wenigstens ein Ansatz, wie man weiterkommt, fehlt mir noch.

und zu (e): Dies ist mein größtes Problem, denn ich habe wirklich nur durch Einsetzen herausgefunden, dass der Grenzwert 0,5 sein müsste und weiß wirklich gar nicht, wie ich hier noch ansetzen soll.

Ich hoffe hier kann mir jemand helfen, wenigstens mit weiteren Anregungen oder Tips.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmen von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Do 23.11.2006
Autor: Leopold_Gast

Beginnen wir mit a). Da brauchst du die Formel

[mm]1 + 2 + 3 + \ldots + n = \frac{1}{2} \, n (n+1)[/mm]

Die ist bekannt durch die Geschichte mit dem kleinen C.F. Gauß.

Und bei b) könntest du folgendermaßen argumentieren:

[mm]0 \leq \frac{2^n}{n!} = \frac{2 \cdot 2 \cdot 2 \cdot 2 \cdots 2}{1 \cdot 2 \cdot 3 \cdot 4 \cdots n} = 2 \cdot 1 \cdot \frac{2}{3} \cdot \frac{2}{4} \cdots \frac{2}{n} \leq 2 \cdot 1 \cdot \frac{2}{3} \cdot \frac{2}{3} \cdots \frac{2}{3} = 2 \cdot \left( \frac{2}{3} \right)^{n-2}[/mm]

Für den Anfang sollte das einmal genügen.

Bezug
                
Bezug
Bestimmen von Grenzwerten: Ansatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Do 23.11.2006
Autor: Daniliesing

Danke für deinen Ansatz! Verstanden habe ich das soweit schonmal und werde mich jetzt gleich ransetzen und dann auch die anderen Aufgaben versuchen. Ich hatte gar nicht daran gedacht, wie bei b einfach abzuschätzen.

Bezug
                
Bezug
Bestimmen von Grenzwerten: exakte Lösung?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:12 So 26.11.2006
Autor: Daniliesing

Aufgabe
Bestimmen Sie den Grenzwert der unten definierten Folgen:

[mm] x_{n} [/mm] = [mm] \bruch{1 + 2n + 3*2^n + 4*3^n}{5 + 6n + 7*2^n + 8*3^n} [/mm]


Die Aufgaben a-d konnte ich mit Hilfe der vorherigen Antwort lösen, aber diese Aufgabe bereitet mir noch immer Probleme. Ich weiß, dass die Folge gegen 0,5 strebt, aber wie ich die exakte lösung aufschreiben kann, ist mir nicht vollkommen klar. Ich hätte so angefangen:

[mm] x_{n} [/mm] = [mm] \bruch{1}{5 + 6n + 7*2^n + 8*3^n} [/mm] + [mm] \bruch{2n}{5 + 6n + 7*2^n + 8*3^n} [/mm] + [mm] \bruch{3*2^n}{5 + 6n + 7*2^n + 8*3^n} [/mm] + [mm] \bruch{4*3^n}{5 + 6n + 7*2^n + 8*3^n} [/mm]
Dabei geht der 1. Summand eindeutig gegen 0. Und für den letzten Summanden gilt: [mm] \bruch{4*3^n}{5 + 6n + 7*2^n + 8*3^n} [/mm] < [mm] \bruch{4*3^n}{8*3^n} [/mm] = 0,5
Nun müsste man also nur zeigen, dass die anderen Summanden auch gegen 0 gehen und schon wäre doch klar, dass der Grenzwert 0,5 ist. Bloß wie kann ich das zeigen und ist dies ein richtiger Lösungsweg?


Bezug
                        
Bezug
Bestimmen von Grenzwerten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 So 26.11.2006
Autor: peter_d

Hallo. Sieh es als Ansatz an, ob das als Lösung durchgeht, weiß ich nicht.

Du betrachtest jeden einzelnen Term. Welcher wächst wohl am schnellsten? Na klar, der Term [mm] $3^n$ [/mm] . Für n gegen Unendlich ist dieser Term unendlich größer als [mm] $2^n$ [/mm] und als die anderen sowieso.
Nun kommt dieser Term sowohl im Nenner als auch im Zähler vor
=> Betrachte nun nur den Term [mm] $\dfrac{4\cdot 3^n}{8\cdot 3^n}$ [/mm]

So sieht man, der Term strebt gegen 4/8 = 1/2

Gruß

Bezug
                                
Bezug
Bestimmen von Grenzwerten: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 So 26.11.2006
Autor: Daniliesing

das war wohl Gedankenübertragung, denn gerade habe ich meine Fragestellung geändert und habe da einen ganz ähnlichen Lösungsvorschlag. Ob man es jetzt o schreiben kann, weiß ich nicht.

Bezug
                        
Bezug
Bestimmen von Grenzwerten: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 So 26.11.2006
Autor: Daniliesing

ich habe die Lösung jetzt gefunden. Man muss einfach [mm] 3^n [/mm] ausklammern, sowohl im Nenner als auch im Zähler und dann klappt es.

Bezug
                
Bezug
Bestimmen von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:03 Mo 27.11.2006
Autor: mrdca

Ich habe da auch mal eine Frage!
Und zwar wenn ich da jetzt:

2 * [mm] (\bruch{2}{3})^{n-2} [/mm]

habe und n geht gegen unendlich strebt, dann habe ich doch so zusagen:

2 * 0 = 0

Oder?

Bezug
                        
Bezug
Bestimmen von Grenzwerten: Richtig!
Status: (Antwort) fertig Status 
Datum: 09:19 Mo 27.11.2006
Autor: Loddar

Hallo mrdca!


Das stimmt so [daumenhoch] !!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]