matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisBestimmen ganzrationaler Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Bestimmen ganzrationaler Fkt.
Bestimmen ganzrationaler Fkt. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen ganzrationaler Fkt.: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 22:25 Mi 02.11.2005
Autor: cologne

Hallo Mathe-Fan,

folgende Aufgabe:

Zwei Straßenenden sind durch die Halbgerade y=0 für [mm] x\le1 [/mm] und y=2 für [mm] x\ge3 [/mm] gegeben. Sie sollen durch einen Übergangsbogen miteinander verbunden werden. Der Einfachheit wegen soll dieser Bogen der Graph einer ganzrationalen Funktion f mit möglichst kleinem Grad sein.
a) Der Graph von f soll an den Anschlussstellen die Steigung 0 haben. Bestimme f(x).
b) f soll an den Anschlussstellen in der ersten und in der zweiten Ableitung mit den Halbgeraden übereinstimmen. Bestimme f(x).

Die Aufgabe a) ist einfach gelöst und es ergibt sich [mm]f(x)=-0,5x^{3}+3x^{2}-4,5x+2[/mm]
Und bei Aufgabe b) habe ich keinen Ansatz, dh. ich kann mir einfach nicht erklären, wie das gemeint sein soll. Kann mir bitte einer helfen?

Vielen Dank und liebe Grüße
Gerd

PS: Die Aufgabe ist aus einem Lehrbuch einer höheren Handelsschule.

        
Bezug
Bestimmen ganzrationaler Fkt.: Vermutung
Status: (Antwort) fertig Status 
Datum: 22:32 Mi 02.11.2005
Autor: Bastiane

Hallo!

> Zwei Straßenenden sind durch die Halbgerade y=0 für [mm]x\le1[/mm]
> und y=2 für [mm]x\ge3[/mm] gegeben. Sie sollen durch einen
> Übergangsbogen miteinander verbunden werden. Der
> Einfachheit wegen soll dieser Bogen der Graph einer
> ganzrationalen Funktion f mit möglichst kleinem Grad sein.
>  a) Der Graph von f soll an den Anschlussstellen die
> Steigung 0 haben. Bestimme f(x).
>  b) f soll an den Anschlussstellen in der ersten und in der
> zweiten Ableitung mit den Halbgeraden übereinstimmen.
> Bestimme f(x).
>  
> Die Aufgabe a) ist einfach gelöst und es ergibt sich
> [mm]f(x)=-0,5x^{3}+3x^{2}-4,5x+2[/mm]
>  Und bei Aufgabe b) habe ich keinen Ansatz, dh. ich kann
> mir einfach nicht erklären, wie das gemeint sein soll. Kann
> mir bitte einer helfen?

Ich vermute, dass gelten soll: f'(x)=0 und f''(x)=0, denn die Halbgeraden haben ja die 1. und 2. Ableitung =0. Ich glaube, durch so eine Bedingung wird der Übergang der Straße nicht so "steil".

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Bestimmen ganzrationaler Fkt.: gelöst!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Mi 02.11.2005
Autor: cologne


> Hallo!
> Ich vermute, dass gelten soll: f'(x)=0 und f''(x)=0, denn
> die Halbgeraden haben ja die 1. und 2. Ableitung =0. Ich
> glaube, durch so eine Bedingung wird der Übergang der
> Straße nicht so "steil".
>  
> Viele Grüße
>  Bastiane

Danke für Deine schnelle Antwort! Diesen Gedanken hatte ich auch schon, nur dass für diese Bedingungen: f'(x)=0 und f''(x)=0 keine Funktion (3. Grades) funktioniert ...

Beim Schreiben, fällt mir gerade ein, dass f(x) ja auch eine Funktion n-ten Grades n>3 sein kann. Ich glaub, dass ist ein guter Gedanke, werd ihn gleichmal weiterrechnen :-)

Hat mir Deine Antwort also doch irgendwie geholfen - DANKE!

viele Grüße Gerd


edit: das war das Problem, ich bin von einer Funktion 3. Grades ausgegangen. eine Funktion 5. Grades erfüllt diese Bedingungen und es ergibt sich eine eindeutige Lösung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]