matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeBestimmen eines Minimums
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Bestimmen eines Minimums
Bestimmen eines Minimums < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen eines Minimums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Mo 01.09.2008
Autor: banana15

Guten Abend!

Mathe war ehrlichgesagt noch nie so mein Ding und daher habe ich es nicht geschafft,folgende Aufgabe zu bewältigen:

Die Verpackung eines bestimmten Produktes muss die Länge von l=20cm haben. Der Deckel des verwendeten Kartons soll das Unterteil um 3cm überlappen.
Das Volumen des Kartons sei [mm] V=4dm^3. [/mm]
Welche Breite und Höhe hat der Karton, wenn das verwendete Material ein Minimum sein soll?


Die Lösung ist vorgegeben,vielleicht hilft es bei der Bearbeitung der Aufgabe:
x= 13,2cm (Breite)
y= 15,17cm (Höhe)


Ich würde mich um einen Lösungsvorschlag freuen,denn ich fühle mich ziemlich hilfslos im Moment. xD

Liebe Grüße!

        
Bezug
Bestimmen eines Minimums: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Mo 01.09.2008
Autor: MatheSckell

Hi und schönen guten Abend,

auch wenn Mathe nicht so dein Ding ist, hast du bestimmt irgendeine Idee. Bringe diese doch bitte mit ein.




Bezug
                
Bezug
Bestimmen eines Minimums: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Mo 01.09.2008
Autor: banana15


Naja...eigentlich hab ich keine Idee.xD
Wir haben erst mit diesem Thema angefangen und es vorher noch nicht im Unterricht behandelt, also ist es keine Wiederholung des Stoffes.
Ich verstehe deine Umgehensweise, aber ich bin wirklich ratlos.

Bezug
        
Bezug
Bestimmen eines Minimums: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Di 02.09.2008
Autor: angela.h.b.


> Guten Abend!
>  
> Mathe war ehrlichgesagt noch nie so mein Ding und daher
> habe ich es nicht geschafft,folgende Aufgabe zu
> bewältigen:
>  
> Die Verpackung eines bestimmten Produktes muss die Länge
> von l=20cm haben. Der Deckel des verwendeten Kartons soll
> das Unterteil um 3cm überlappen.
>  Das Volumen des Kartons sei [mm]V=4dm^3.[/mm]
>  Welche Breite und Höhe hat der Karton, wenn das verwendete
> Material ein Minimum sein soll?
>  
>
> Die Lösung ist vorgegeben,vielleicht hilft es bei der
> Bearbeitung der Aufgabe:
>  x= 13,2cm (Breite)
>  y= 15,17cm (Höhe)
>  
>
> Ich würde mich um einen Lösungsvorschlag freuen,denn ich
> fühle mich ziemlich hilfslos im Moment. xD


Hallo,

ist denn das die genaue Aufgabe im Wortlaut? Wahrscheinlich nicht.

Was mir fehlt: wenn man den Materialverbrauch berechnen möchte, bräuchte man auch noch Anweisungen zur Breite der Kleberänder, ich muß den Karton ja irgendwie zusammenkleben.

Na gut, man kann's allerdings auch so machen: man nimmt die einzelnen Pappen und klebt sie mit Tesafilm zusammen - sicher nicht die stabilste Lösung, aber vielleicht ist's so gedacht. Man soll ja auch den Mindestverbrauch berechnen, wenn ich die skurrile Frage richtig verstehe, also den Verbrauch, unter dem das Problem einfach nicht zu lösen ist.
(Ich hab's durchgerechnet und eine andere Lösung als die Dir vorliegende bekommen)


Zur Vorgehensweise: Einen Karton wirst Du Dir vorstellen können. Nennen wir seine  Seiten

l (Länge), die ist ja vorgegeben: l=20 cm
x (Breite)
y (Höhe).

Das Volumen V ist auch gegebn, [mm] V=4dm^3. [/mm] Da die Seitenlänge in cm gegeben ist, sollte man das Volumen auch unverzüglich in [mm] cm^3 [/mm] umrechnen, sonst gibt#s später leicht Chaos. (Du kannst natürlch auch die Lände in dm umwandeln, aber meist rechnet man lieber mit cm, weil man cm im Alltag mehr gewohnt ist.

Mal so nebenbei: [mm] 4dm^3, [/mm] wieviel ist das eigentlich? Wieviel Liter Milch könntest Du da reingießen?
Ich finde es nützlich, sich sowas zu überlegen, da ekommt man vorab schonmal ein bißchen Gefühl dafür, welche Ergebnissse in etwa zu erwarten sind.)

Nun weiter mit der eigenlichen Aufgabe:

Was hat das Volumen mit den Seiten l,x,y zu tun? V=...  
Dies ist Deine Nebenbedingung. Du kannst x und y nicht beliebig klein wählen, weil ja ein gewisses Volumen erreicht werden soll.

Jetzt geht's an die Zielfunktion. Du mußt nun die Gleichung aufstellen, die den Materialverbrauch in [mm] cm^2 [/mm] liefert, denn die benötigte Kartonfläche zu minimieren ist ja das Ziel.

Nun schau, woraus der Karton besteht:

Boden: [mm] F_B=... [/mm]

Vorderseite: [mm] F_V=... [/mm]

Rückseite: [mm] F_R=... [/mm]

linke Seite: [mm] F_{Sl}=... [/mm]

rechte Seite: [mm] F_{Sr}=... [/mm]

Deckel: Der Deckel ist etwas schwieriger. er muß erstmal so groß sein wie der Boden, aber in der Aufgabe steht, daß er um 3cm überlappen soll. Du mußt also für jede Kante noch einen 3 cm breiten Streifen zugeben.    [mm] F_D=... [/mm]

Addierst Du alles, was Du zuvor ausgerechnet hat, so hast Du den Gesamtkartonverbrauch (in Abhängigkeit von x und y) für eine Schachtel mit den geforderten Eigenschaften.

Nun ist es schwierig, eine Funktion zu optimieren, die von zwei Variablen abhängt.

Aber Du kannst Dich elegant retten: löse V=... nach y auf.
Mit Diesem y ersetze nun jedes y in der Zielfunktion. Ergebnis: Deine Zielfunktion hängt nur noch von x ab.

Und jetzt bist Du an dem Punkt, an dem Du das gewohnte Procedere der Extremwertbestimmung mit 1. Ableitung etc. anlaufen lassen kannst.

Versuch nun mal und zeig' Deine Ergebnisse, eventuell auch Zwischenergebnisse.

Sag' nicht gleich: ich versteh's nicht. Fang nach Anleitung an, stell Dir einen kleinen Karton auf den Tisch, vielleicht etwas Papier und eine Scere. es gibt viele Leute, die's besser kapieren, wenn sie etwas zum Anfassen haben.

Gruß v. Angela












Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]