matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenBestimme den Funktionsterm
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Bestimme den Funktionsterm
Bestimme den Funktionsterm < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimme den Funktionsterm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Mo 18.09.2006
Autor: destilo

Aufgabe
Bestimme den Funktionsterm [mm]f(x) = a * e^{kx}[/mm]

a) Die Gerade zu [mm]y = 2x - 1[/mm] ist Tangente an den Graphen von f mit dem Berührpunkt P(1/f(1))

Mir ist nicht wirklich klar wie ich jetzt ansetzen muss? Ich denke mir mal man muss jetzt Bedingungen aufstellen und dann dadurch die einzelnen Unbekannten berechnen indem man Gleichungssysteme erstellt. Ich hoffe mir kann da einer auf die Sprünge helfen. Wäre für jede Antwort dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimme den Funktionsterm: Ansatz, Aufgabenanalyse
Status: (Antwort) noch nicht fertig Status 
Datum: 16:49 Mo 18.09.2006
Autor: Walty


> Bestimme den Funktionsterm [mm]f(x) = a * e^{kx}[/mm]
>  
> a) Die Gerade zu [mm]y = 2x - 1[/mm] ist Tangente an den Graphen von
> f mit dem Berührpunkt P(1/f(1))
>  Mir ist nicht wirklich klar wie ich jetzt ansetzen muss?
> Ich denke mir mal man muss jetzt Bedingungen aufstellen und
> dann dadurch die einzelnen Unbekannten berechnen indem man
> Gleichungssysteme erstellt. Ich hoffe mir kann da einer auf
> die Sprünge helfen. Wäre für jede Antwort dankbar.

Das sehe ich ebenso.
Die Funktionsgleichung beschreibt eine Funktionsschar in Abhängigkeit der Parameter a und k.
Du sollst  [mm] a_{1} [/mm] und [mm] k_{1} [/mm] so (als Zahlen) bestimmen, dass die Funktion dann den gegebenen Kriterien entspricht...

  
Durch Aussage a) weisst Du,
1.) dass die Funktion f in x=1 den Funktionswert y(1) hat, denn dort ist ein Berührpunkt der beiden Graphen.[ -> f(1)=y(1)=1 ]
2.) dass die Funktion f in P(1|f(1)) die Steigung 2 hat. (y ist Tangente) [-> f'(1)=2]

das sind 2 Bedingungen für 2 unbekannte, mithin sollte das hinreichend sein

Du bestimmst also die Ableitung von f(x), setzt die Bedingungen ein und solltest idealerweise die entstehenden Gleichungen lösen können... ;-)

Bezug
                
Bezug
Bestimme den Funktionsterm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Mo 18.09.2006
Autor: destilo

Vielen Dank für deine Mühe und die schnelle Bearbeitung.

Ich habe nun also zwei Bedingungen die wie folgt lauten:

(1) f(1) = 1
und
(2) f'(1) = 2  

Jetzt muss ich die erste Ableitung von f(x) bilden damit ich beide Bedingungen mit Gleichungen ausdrücken kann.

Ich habe jedoch noch Probleme bei Ableitungen mit Exponenten und der eulerschen Zahl. Ich bitte um Verständnis. Aber ich vermute mal das man die Produktregel und die Kettenregel anwenden muss. Vielleicht kann mir einer behilflich sein.

Die erste Bedingung müsste dann so lauten
(1) [mm]f(1) = a * e^{k*1} = 1[/mm]

aber bei der zweiten habe ich noch keinen richtigen Durchblick außer das es f'(1) = 2 sein muss.

Ich bitte um eure Hilfe!


Bezug
                        
Bezug
Bestimme den Funktionsterm: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Mo 18.09.2006
Autor: bauta

Wenn man ein Exponetialfunktionableitet dann kommt wieder ein Exponetialfunktion heraus, man muss nur den Vorfaktor vor der größe nach der abgeleitet wird davor schreiben:
wenn [mm]f(x) = a*e^{k*x}[/mm] dann ist
also [mm]f'(x) = a*k*e^{kx} [/mm]
und dann sollte alles weiter doch hinhauen oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]