matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBester Test zum Niveau alpha
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Bester Test zum Niveau alpha
Bester Test zum Niveau alpha < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bester Test zum Niveau alpha: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Do 09.07.2009
Autor: neon0112

Hallo zusammen,

was versteht man unter einem "besten Test zum Niveau [mm] \alpha [/mm] "?

Wenn gegeben ist:

[mm] H_0 [/mm] : u <= [mm] u_0 [/mm]
[mm] H_1 [/mm] : u > [mm] u_0 [/mm]

P(T > c) = [mm] \alpha [/mm]


dann bedeutet das, dass man sich zu einer Wahrscheinlichkeit [mm] \alpha [/mm] irrt (also man sich für
[mm] H_1 [/mm] entscheidet obwohl [mm] H_0 [/mm] vorliegt).

Wenn die Gleichung aufgeht, dann ist doch
- [mm] H_1 [/mm] signifikat zum Niveau [mm] \alpha [/mm]
- [mm] H_o [/mm] wird verworfen

Was ist nun ein bester Test zum Niveau [mm] \alpha? [/mm]


Kann das jemand sehr einfach erklären? Habe schon einige Zeit bei google gesucht
und nicht wirklich eine einleuchtende Erklärung gefunden. :-(


Vielen Dank für eure Antworten im Voraus!

Viele Grüße
Christian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bester Test zum Niveau alpha: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Do 09.07.2009
Autor: vivo

Hallo,

der beste Test zum Niveau [mm] \alpha [/mm] ist der, welcher den Fehler 2. Art minimiert.

gruß

Bezug
                
Bezug
Bester Test zum Niveau alpha: Rückfrage
Status: (Frage) überfällig Status 
Datum: 00:42 Fr 10.07.2009
Autor: neon0112

Das bedeutet also, dass ein Test zu Niveau [mm] \alpha [/mm] = 1,00 das Gleiche ist wie ein bester Test zu Niveau [mm] \alpha [/mm] ?

Gruß
Christian


Bezug
                        
Bezug
Bester Test zum Niveau alpha: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 So 12.07.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]