matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Beste Kombination
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Beste Kombination
Beste Kombination < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beste Kombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Mi 19.04.2006
Autor: Bit2_Gosu

Hallo !!

Ich weiß, dass wir in der achten Klasse folgendes Problem gelöst haben (ich kann mich aber nicht mehr dran erinnern wie):

wir haben zaun für ein grundstück gekauft. Wie sieht das Grundstück aus, für das das Verhältnis      
verbrauchter Zaun --> Flächeninhalt des Eingezäunten
am günstigsten ausfällt???
(das heißt, dass ich für möglichst wenig Zaun möglichst viel eingezäunt hab)

ich weiß, dass es quadratisch aussieht , aber wie ich das damals bewiesen habe ...

Vielen Dank für eure Hilfe !!!

        
Bezug
Beste Kombination: Idee
Status: (Antwort) fertig Status 
Datum: 19:56 Mi 19.04.2006
Autor: Amy1988

Hallo Richy =)

Also ich würde folgendermaßen vorgehen:
Erstmal die Formeln für Umfang und Flächeninhalt aufschreiben...
U = 2a + 2b
A = a * b

Dann die Formel für den Umfang nach a oder b auflösen und in A einsetzen.
Dann kannst du über die zweite Ableitung die Extrema von A in Abhängigkeit von U bestimmen!!!

Hoffe ich konnte helfen =)

Amy

Bezug
                
Bezug
Beste Kombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Mi 19.04.2006
Autor: Bit2_Gosu

hm Ableitung etc. kommt aber noch net in der 8 sondern in der 11...

aber ich erinnere mich, es hatte etwas mit den beiden Gleichungen zu tun.

allerdings wenn ich die umforme, hab ich doch keine variable gewonnen oder?

a =  (U-2b) /2   und nun???

Bezug
        
Bezug
Beste Kombination: ohne Ableitung
Status: (Antwort) fertig Status 
Datum: 20:03 Mi 19.04.2006
Autor: Loddar

Hallo Richard!


Ich nehme mal an, dass Dir der Ausdruck "Ableitung(en)" noch nicht viel sagt, oder? ;-)

Dann musst Du wie oben angedeutet, eine Flächenfunktion ermitteln, indem die Umfangsformel z.B. nach $b \ = \ ...$ umstellst und in die Flächenformel einsetzt.

Dadurch ergibt sich eine quadratische Funktion (Parabel), die nach unten geöffnet ist. Also befindet sich der größte Wert am Scheitelpunkt dieser Parabel.


Gruß
Loddar


Bezug
                
Bezug
Beste Kombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Mi 19.04.2006
Autor: Bit2_Gosu

hm sagen wir wir haben   30 meter maschendrahtzaun zur verfügung.

30 = 2a + 2b      --->               a= 15-b

A =ab          --->   A= (15-b) (b)



y= (15-b) * (b)   ist doch aber keine Parabel, sonder eine Gerade. Was soll ich denn dann machen??

Danke schon mal !


Bezug
                        
Bezug
Beste Kombination: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 19.04.2006
Autor: M.Rex

Hallo,

So, ich hoffe, ich kann dir weiterhelfen:

Zuerst mal  zu deinem Beispiel:

(15-b) * b ist KEINE Gerade, sondern tatsächlich eine Parabel, Multipliziere mal die Klammern aus.

Allgemeine Lösung:

Wir haben y Meter Zaun gekauft. Die Rechteckseiten bezeichnen wir mal mit a und b.

Dann gilt: y = 2a + 2b  [mm] \gdw [/mm] a = ( [mm] \bruch{1}{2} [/mm] y - b ) . Das
setzen wir mun in die Flächenformen A = a * b des Rechteckes ein.
Also erhalten wir A =  ( [mm] \bruch{1}{2} [/mm] y - b ) * b = - b² +  [mm] \bruch{1}{2} [/mm] y b
Von dieser Parabel musst du jetzt den Scheitelpunkt berechnen.
Das geht entweder per quadratischer Ergänzung, oder, wenn du dir dabei unsicher bist, ein kleiner Tipp: Der x-Wert des Scheitelpunktes liegt genau zwischen den beiden Nullstellen der Parabel...

So, ich denke, diese Tipps sollte erstmal reichen, wenn nicht, werde ich dir die weiteren Rechnungen auch noch zeigen...

Gruss Marius

Bezug
                                
Bezug
Beste Kombination: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:18 Mi 19.04.2006
Autor: Bit2_Gosu

Boah Danke euch beiden !!!


Ich bin ja so ein hohlkopp, nat is das ne parabel und dann amcht es auch sinn ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]