matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikBestapproximation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Bestapproximation
Bestapproximation < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestapproximation: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:40 Fr 01.07.2011
Autor: Wurzel2

Aufgabe
Wir betrachten die Funktion sin auf [0,1]. Bestimme das Polynom [mm]p\in\IR[/mm] [mm]\le[/mm]1 d. h. vom Grad höchstens 1 mit [mm]\left || p -sin \right ||_2 [/mm] [mm]\le[/mm] [mm]\left || q -sin \right ||_2 [/mm]  [mm]q\in\IR[/mm] [mm]\le[/mm]1

Hallo,

wie gehe ich hier am besten vor. Suche ich mir ein p und q aus und schaue ob die Rechnung aufgeht?

Danke im Voraus für Tipps/Hilfe

        
Bezug
Bestapproximation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Fr 01.07.2011
Autor: Al-Chwarizmi


> Wir betrachten die Funktion sin auf [0,1]. Bestimme das
> Polynom [mm]p\in\IR[/mm] [mm]\le[/mm]1 d. h. vom Grad höchstens 1 mit [mm]\left || p -sin \right ||_2[/mm]
> [mm]\le[/mm] [mm]\left || q -sin \right ||_2[/mm]  [mm]q\in\IR[/mm] [mm]\le[/mm]1
>  Hallo,
>  
> wie gehe ich hier am besten vor. Suche ich mir ein p und q
> aus und schaue ob die Rechnung aufgeht?
>  
> Danke im Voraus für Tipps/Hilfe


Hallo [mm] $\wurzel{2}$ [/mm] ,

ich sehe da einen gewissen Erläuterungsbedarf bei der
Aufgabenstellung. Meine Vermutung ist, dass es darum
geht, in der linearen Funktion [mm] p:t\mapsto{a*t+b} [/mm] die beiden
Parameter a und b so festzulegen, dass der Wert des
Integrals

     [mm] $\integral_{0}^{1}\left(p(t)-sin(t)\right)^2\,dt$ [/mm]

minimal wird gegenüber jeder anderen Wahl von (a,b).
Durchzuführen ist also zuerst eine Integration nach t und
dann eine Extremalaufgabe mit den Variablen a und b.
Möglicherweise bietet sich aber "Ableiten unter dem
Integralzeichen" an, um sich die Arbeit zu erleichtern.

LG   Al-Chw.  







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]