matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBeschreibung eines Körpers
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Beschreibung eines Körpers
Beschreibung eines Körpers < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschreibung eines Körpers: Weiterentwicklung ...
Status: (Frage) beantwortet Status 
Datum: 17:15 Sa 14.04.2018
Autor: Celine123

Aufgabe
Das Volumen eines Körpers wurde durch die folgende Formel berechnet:
V= [mm] \integral_{0}^{\pi}{\pi*(cos(x))^{2} dx}. [/mm]

Beschreiben Sie die Form des Körpers und fertigen Sie eine Skizze an.

Hallo, ich würde mich sehr freuen, wenn mir jemand helfen könnte. Vielen Dank.

Ich habe bisher die Stammfunktion des Integranden gebildet und

[mm] \pi*\bruch{1}{2}*(x+sin(x)*cos(x)) [/mm] erhalten. Dies an der oberen Grenze - dies an der unteren Grenze lieferte  mir [mm] \bruch{1}{2}*\pi, [/mm] doch hat es mir zur Beschreibung und Anfertigung der Skizze leider nicht geholfen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt und wäre über weitere Denkanstöße bis hin zur Lösung sehr dankbar.

        
Bezug
Beschreibung eines Körpers: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Sa 14.04.2018
Autor: HJKweseleit

Mit Hilfe eines Integrals wird nicht nur die Fläche zwischen dem Graphen einer Funktion und der x-Achse berechnet.

Wenn man den Graphen einer Funktion um die x-Achse rotieren lässt, entsteht ein sogenannter Rotationskörper, der von dem rotierenden Graphen begrenzt wird. So wird aus einem rotierenden oberen Halbkreis eine Kugel, aus einer Ursprungsgeraden von x=0 bis x=a ein quer liegender Kegel der Höhe a usw.

Die Formel für die Volumenberechnung eines solchen Körpers, dessen Graph der Funktion f(x) von x=a bis x=b geht und um die X-Achse rotiert, lautet

V = [mm] \pi \integral_{a}^{b}{(f(x))^2 dx}. [/mm]

Lässt man also den Graphen der Kosinus-Funktion von x=0 bis [mm] x=\pi [/mm] um die x-Achse rotieren, so hätte der Rotationskörper genau dieses Volumen.

[Dateianhang nicht öffentlich]

Allerdings lässt sich das Ganze nicht umkehren: Ein Körper, der sich so berechnen lässt, muss nicht genau auf diese Weise entstanden sein. Ein Würfel aus lauter Notizzetteln mit der Kantenlänge a hat das Volumen [mm] a^3, [/mm] aber wenn man ihn schräg verschiebt ("Scherung"), hat er noch das selbe Volumen mit der selben Formel, ist aber kein Würfel mehr.

[Dateianhang nicht öffentlich]

Der zu deiner Formel passende Körper kann, muss aber nicht so aussehen /entstanden sein.

Würde man den Körper z.B. in hauchdünne senkrechte Scheiben zerschneiden und diese auf die x-Achse nebeneinander legen, so würde daraus der abgebildete körper entstehen:
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 3 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]