matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieBeschränktheit einer Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Beschränktheit einer Menge
Beschränktheit einer Menge < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 So 24.11.2013
Autor: DeepSound

Aufgabe
Definition:
Sei [mm] \left( X, d \right) [/mm] ein metrischer Raum und A [mm] \subseteq [/mm] X.
A heißt beschränkt, wenn gilt:
Für alle x [mm] \in\ [/mm] X existiert ein M > 0, sodass d(a,x) [mm] \le [/mm] M  für alle a [mm] \in\ [/mm] A.

Beweisen Sie:
Für A [mm] \ne \emptyset [/mm] gilt:
A beschränkt [mm] \gdw [/mm] Es existiert ein x [mm] \in\ [/mm] X und ein M > 0, sodass d(a,x) [mm] \le [/mm] M für alle a [mm] \in\ [/mm] A.

Ich bräuchte Hilfe bei dem Beweis hier.

Also einfach gesagt, es geht in diesem Beweis nur darum, zu zeigen, dass es ausreicht, einen Punkt in X zu finden, der die Bedingung erfüllt, um zu wissen, dass A beschränkt ist, statt es für alle Punkte in X nachweisen zu müssen.

Die Hinrichtung in diesem Beweis ist klar! Das besagt ja die Definition, aber bei der Rückrichtung bleib ich irgendwie hängen.
Meine Idee war es, mit Hilfe der Dreiecksungleichung der Metrik einen beliebigen Punkt in X immer auf den Punkt zurückzuführen, für den diese Bedingung gilt, um den neuen Abstand mit Hilfe von M abschätzen zu können, aber irgendwie will mir das nicht gelingen.
Habt ihr 'nen Tipp, wie ich an das ganze rangehen muss? Übrigens darf ich den Begriff des Durchmessers hier noch nicht benutzen. Die Beschränktheit zu zeigen mit Hilfe des Durchmessers soll mit diesem Satz nämlich geführt werden.

Vielen Dank schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beschränktheit einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 02:51 Mo 25.11.2013
Autor: Gonozal_IX

Hiho,

deine Idee ist doch gut, wo hängt es nun?

Sei dein ausgezeichnetes x mal [mm] \overline{x} [/mm] genannt, dann gilt doch für jedes andere x:

$d(x,a) [mm] \le d(x,\overline{x}) [/mm] + [mm] d(\overline{x},a) \le d(x,\overline{x}) [/mm] + M =: [mm] M_x$ [/mm]

Und du bist fertig.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]