matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationBeschraenktheit der Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Beschraenktheit der Ableitung
Beschraenktheit der Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschraenktheit der Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Mi 15.03.2006
Autor: charlottem

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo,
kann mir jemand den Zusammenhang zwischen den Mittelwertungleichungen und der Beschraenktheit der Ableitung genauer erklaeren?

Ich weiss ja, dass aus der L-stetigkeit der Funktion die Beschraenktheit der Ableitung folgt. Aber Wie hat man sich das anschaulich vorzustellen und wie könnte man sowas überhaupt beweisen?

Danke schon mal

        
Bezug
Beschraenktheit der Ableitung: Beschränktheit der Ableitung
Status: (Antwort) fertig Status 
Datum: 12:45 Mi 15.03.2006
Autor: Sancho

hi Charlottem, den Beweis, das aus der Lipschitzstetigkeit die Beschränktheit
der Ableitung folgt kann ich dir liefern. Die Funktion ist nach Vorrausetztung
Liptschitz-stetig und diffbar(brauch ich für den MWS) dann gilt für
[mm] f:[a,b] \rightarrow \IR [/mm] f lipschitz-stetig in [a,b] und diffbar in (a,b)
dann gilt:
[mm] \left| f(x) - f(y) \right| \le L \left| x - y \right| [/mm] für [mm] y,x \in [a,b] [/mm] Diese Ungleichung kann man umformen:
[mm] \left| \frac{f(x)-f(y)}{x-y} \right| \le L [/mm]  ,da f aber Diffbar ist,
gilt nach dem Mittelwertsatz [mm] \left| \frac{f(x)-f(y)}{x-y} \right| = \left| f'(c) \right| \mbox{für} c \in (a,b) [/mm]. Damit folgt durch einsetzten der beiden Gleichungen die beschränktheit der Ableitung:
[mm] \left| f'(c) \right| \le L [/mm]
Da x,y und damit c beliebig aus dem Intervall [a,b] waren, ist die
Ableitung beschänkt auf [a,b].

Zur anschaulichen Vorstellung hab ich keine Idee.
MFG Sancho


Bezug
                
Bezug
Beschraenktheit der Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Mi 15.03.2006
Autor: charlottem

Hi Sancho,
danke für Deine Antwort,

1. aber der MWS besagt doch nur dass es mindestens einen solchen c gibt
wir können doch nicht so ohne weiteres die beliebig setzen und eine Aussage für alle Elemente aus dem Intervall damit beweisen, oder?

2. Ich meinte eigentlich die Frechet Ableitung in einem Punkt. Die muss ja auch nicht durch die Richtungsableitungen eindeutig best. sein..


Gruss

Bezug
                        
Bezug
Beschraenktheit der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mi 15.03.2006
Autor: mathemaduenn

Hallo charlottem,
[willkommenmr]
Da würde ich mal folgendes vorschlagen:
[mm]||(f(x+h)-f(x))-f'(x)h||<\epsilon ||h||[/mm]
[mm] \Rightarrow [/mm]
[mm]-||(f(x+h)-f(x))||+||f'(x)h||<\epsilon ||h||[/mm]
[mm] \Rightarrow [/mm]
[mm]||f'(x)||*||h||<\epsilon ||h||+||(f(x+h)-f(x))||[/mm]
[mm]||f'(x)||<\epsilon+\bruch{||(f(x+h)-f(x))||}{||h||}[/mm]
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]