matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenBeschränktheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "komplexe Zahlen" - Beschränktheit
Beschränktheit < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Do 22.11.2012
Autor: blubblub

Aufgabe
Es sei S := {z [mm] \in \IC; [/mm] 0 [mm] \le [/mm] Re(z) [mm] \le [/mm] 1} und f : S [mm] \to \IC [/mm] eine beschränkte, stetige Funktion, die
auf °S = {z [mm] \in \IC; [/mm] 0 < Re(z) < 1} holomorph ist. Weiter sei für [mm] M_0,M_1 \in \IR_+ [/mm]
|f(z)|= [mm] \begin{cases}M_0, & \mbox{für } Re(z)= \mbox{0} \\ M_1, & \mbox{für } Re(z)= \mbox{1} \end{cases} [/mm]

Zeigen sie
a) Ist [mm] M_0=M_1=1 [/mm] so ist [mm] f_n: S\to \IC, z\mapsto \bruch{f(z)}{1+ \bruch{z}{n}} [/mm] ist mit der Schranke 1 beschränkt.
b) es gilt [mm] |f(z)|\le M_0^{1-Re(z)} M_1^{Re(z)} [/mm] für alle [mm] z\in [/mm] S
Hinweis: Betrachten Sie wieder zuerst den Fall, dass [mm] M_0 [/mm] = [mm] M_1 [/mm] = 1 ist und nutzen Sie Teil a).
Führen Sie die allgemeine Aussage dann auf diesen Fall zurück.

guten Morgen

ich sitze zur zeit an dieser Aufgabe und bräuchte Tipps, wie ich anfangen könnte.

Leider habe ich selbst keine Idee :-(

Danke schonmal für die Hilfe

        
Bezug
Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Do 22.11.2012
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Es sei S := {z [mm]\in \IC;[/mm] 0 [mm]\le[/mm] Re(z) [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1} und f : S [mm]\to \IC[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> eine beschränkte, stetige Funktion, die
>  auf °S = {z [mm]\in \IC;[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0 < Re(z) < 1} holomorph ist. Weiter

> sei für [mm]M_0,M_1 \in \IR_+[/mm]
>  |f(z)|= [mm]\begin{cases}M_0, & \mbox{für } Re(z)= \mbox{0} \\ M_1, & \mbox{für } Re(z)= \mbox{1} \end{cases}[/mm]
>  
> Zeigen sie
> a) Ist [mm]M_0=M_1=1[/mm] so ist [mm]f_n: S\to \IC, z\mapsto \bruch{f(z)}{1+ \bruch{z}{n}}[/mm]
> ist mit der Schranke 1 beschränkt.
>  b) es gilt [mm]|f(z)|\le M_0^{1-Re(z)} M_1^{Re(z)}[/mm] für alle
> [mm]z\in[/mm] S
>  Hinweis: Betrachten Sie wieder zuerst den Fall, dass [mm]M_0[/mm] =
> [mm]M_1[/mm] = 1 ist und nutzen Sie Teil a).
>  Führen Sie die allgemeine Aussage dann auf diesen Fall
> zurück.
>  guten Morgen
>
> ich sitze zur zeit an dieser Aufgabe und bräuchte Tipps,
> wie ich anfangen könnte.
>  
> Leider habe ich selbst keine Idee :-(
>
> Danke schonmal für die Hilfe  


Tipp: Phragmen- Lindelöf Methode

W.Rudin: Real and complex Analysis, Chapter 12.

FRED

Bezug
                
Bezug
Beschränktheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Do 22.11.2012
Autor: blubblub

Diese Methode hatten wir nicht in der Vorlesung werde mich aber gleich damit beschäftigen

danke

Bezug
                
Bezug
Beschränktheit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:35 So 25.11.2012
Autor: blubblub

Vielen dank

es hat alles super geklappt :-)

Man kann ja auf die Beschränkheit nicht verzichten...
könntest du mir eine Funktion nennen bei der die Ungleichung aus b aufgrund der Beschränktheit nicht funktioniert??

Bezug
                        
Bezug
Beschränktheit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 27.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]