matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBeschränkte Jacobi-Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Beschränkte Jacobi-Matrix
Beschränkte Jacobi-Matrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Jacobi-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:53 Do 10.06.2010
Autor: Lippel

Aufgabe
a) Sei [mm] $D\subset\IR^n$ [/mm] eine offene konvexe Menge und [mm] $f:D\rightarrow\IR^n$ [/mm] eine differenzierbare Abbildung mit gleichmäßig beschränkter Jacobimatrix
[mm]\underset{x \in D}{sup} ||J_f(x)||_{2}\le{K_{2}}<{\infty}[/mm]
Man zeige, dass f dann in D Lipschitz-stetig ist, d.h.
[mm]||f(x)-f(y)||_{2}\le{K_{2}||y-x||_{2}}\qquad x,y \in D[/mm]

b) Gilt eine analoge Aussage auch, wenn man die Spektralnorm [mm] $||*||_2$ [/mm] durch eine beliebige andere (natrürliche) Matrixnorm $||*||$ ersetzt?

Hallo,

für Aufgabenteil a) habe ich eine Lösung, bin mir aber mit der Argumentation noch nicht ganz sicher:

Seien $x,y [mm] \in [/mm] D$. Da D konvex, gilt für alle [mm] $t\in [0,1]\subset\IR$, [/mm] dass $x+t(y-x) [mm] \in [/mm] D$
Wir definieren [mm] $g:[0,1]\rightarrow\IR^n$, $t\mapsto{g(t)}:=f(x+t(y-x))$ [/mm]
Daraus folgt für die i-te Komponente von f, $i [mm] \in [/mm] {1,...,n}$:
[mm] f_{i}(y)-f_{i}(x)=g_{i}(1)-g_{i}(0)=\int_{0}^{1}g_{i}'(s)ds=\int_{0}^{1}\sum_{j=1}^{n}\partial_{j}f_{i}(x+s(y-x))(y_{j}-x_{j})ds[/mm]
[mm]\Rightarrow{f(y)-f(x)=\int_{0}^{1}J_{f}(x+s(y-x))(y-x)ds}[/mm]
[mm]\Rightarrow{||f(y)-f(x)||_{2}\le\int_{0}^{1}||J_{f}(x+s(y-x))(y-x)||_{2}ds}\le{K_{2}}||y-x||_{2} [/mm]
wobei im letzten Schritt die Stadndardabschätzung für Integrale verwendet wurde.

b) Hier habe ich keine Idee woran der analoge Beweis für eine andere Matrixnorm scheitern könnte. Für die Normen [mm] $||*||_\infty$ [/mm] und [mm] $||*||_1$ [/mm] gilt die Aussage auch, das habe ich gezeigt. Allerdings käme mir die Frage dann doch überflüssig vor. Also woran könnte ich bei anderen Matrixnormen scheitern? Gibt es ein Gegenbeispiel?

Vielen Dank für eure Hilfe.

Viele Grüße, Lippel

        
Bezug
Beschränkte Jacobi-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:47 Sa 12.06.2010
Autor: max3000


>  Hallo,
>  
> für Aufgabenteil a) habe ich eine Lösung, bin mir aber
> mit der Argumentation noch nicht ganz sicher:
>  
> Seien [mm]x,y \in D[/mm]. Da D konvex, gilt für alle [mm]t\in [0,1]\subset\IR[/mm],
> dass [mm]x+t(y-x) \in D[/mm]
>  Wir definieren
> [mm]g:[0,1]\rightarrow\IR^n[/mm], [mm]t\mapsto{g(t)}:=f(x+t(y-x))[/mm]
>  Daraus folgt für die i-te Komponente von f, [mm]i \in {1,...,n}[/mm]:
>  
> [mm]f_{i}(y)-f_{i}(x)=g_{i}(1)-g_{i}(0)=\int_{0}^{1}g_{i}'(s)ds=\int_{0}^{1}\sum_{j=1}^{n}\partial_{j}f_{i}(x+s(y-x))(y_{j}-x_{j})ds[/mm]
>  [mm]\Rightarrow{f(y)-f(x)=\int_{0}^{1}J_{f}(x+s(y-x))(y-x)ds}[/mm]
>  
> [mm]\Rightarrow{||f(y)-f(x)||_{2}\le\int_{0}^{1}||J_{f}(x+s(y-x))(y-x)||_{2}ds}\le{K_{2}}||y-x||_{2}[/mm]
>  wobei im letzten Schritt die Stadndardabschätzung für
> Integrale verwendet wurde.

Im letzten Schritt benutzt du eigentlich die Submultiplikativität der Norm, also

[mm] \|J_{f}(x+s(y-x))(y-x)\|\le\|J_{f}(x+s(y-x))\|\|(y-x)\|| [/mm]

und die Beschränktheit der Jacobimatrix

[mm] \|J_{f}(x+s(y-x))\|<\infty [/mm] und [mm] K_2:=max_{s\in(0,1)}\|J_{f}(x+s(y-x))\| [/mm]

Das wäre denke ich die richtige Argumentation. Das [mm] \|x-y\| [/mm] und [mm] K_2 [/mm] hängen nun nicht mehr von s ab und können aus dem Integral rausgezogen werden.
  

> b) Hier habe ich keine Idee woran der analoge Beweis für
> eine andere Matrixnorm scheitern könnte. Für die Normen
> [mm]||*||_\infty[/mm] und [mm]||*||_1[/mm] gilt die Aussage auch, das habe
> ich gezeigt. Allerdings käme mir die Frage dann doch
> überflüssig vor. Also woran könnte ich bei anderen
> Matrixnormen scheitern? Gibt es ein Gegenbeispiel?

Ich weiß das leider auch nicht so genau aber ich denke du solltest dir den Begriff "Normverträglichkeit" mal anschauen. Der besagt, dass man folgende Abschätzung gilt:

[mm] \|Av\|\le\|A\|\|v\| [/mm]

Schau einfach hier nochmal nach: http://de.wikipedia.org/wiki/Normierter_Raum#Matrixnormen

Da wir diese Abschätzung im letzten Schritt gebraucht haben, geht unser Beweis in diesem Fall nicht mehr. Vielleicht findest du mal ein Matrix-Vektor Normpaar, was nicht verträglich ist und findest eventuell ein Gegenbeispiel.
Genaueres kann ich dir leider erstmal auch nicht sagen.

Grüße

Max


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]