matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBeschränkte Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Beschränkte Funktion
Beschränkte Funktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:19 Mi 24.03.2010
Autor: Pidgin

Aufgabe
Nehme an das I ein nichtleeres offenes Intervall ist und das f beschränkt und C^unendlich auf I ist. Wenn ein M > 0 existiert, so dass [mm] |f^{(k)}(x)| \leq [/mm] Mk  [mm] \forall [/mm] x [mm] \in [/mm] I und k genügend groß ist, und wenn a,b [mm] \in [/mm] I existieren, so dass [mm] \int\limits_a^b f(x)x^n [/mm] dx = 0 für n = 0, 1, ... gilt, dann beweise dass f identisch Null auf [a,b] ist.

Ich hab leider keine Ahnung wie ich an diese Aufgabe herangehen soll. Ich habs mal mit partieller Integration probiert, aber da bin ich leider nicht weitergekommen. Hat jemand eine Idee? Wäre dankbar für jede Hilfe.

        
Bezug
Beschränkte Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Mi 24.03.2010
Autor: fred97

Sei [mm] x_0 \in [/mm] I fest. Sei [mm] T_n [/mm] das n-te Taylorpolynom von f (Entw.-Punkt [mm] x_0). [/mm] Sei x [mm] \in [/mm] I.

Nach dem Satz von Taylor ex. ein [mm] \xi [/mm] zwischen [mm] x_0 [/mm] und x mit:

             $f(x) [mm] -T_n(x)= \bruch{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ [/mm]

Mit der Vor. $ [mm] |f^{(k)}(x)| \leq [/mm] $ Mk  $ [mm] \forall [/mm] $ x $ [mm] \in [/mm] $ I und k genügend groß, zeige nun:

                 [mm] $T_n(x) \to [/mm] f(x)$ für $n [mm] \to \infty$ [/mm]

D.h.:   (*)     $f(x) = [mm] \summe_{n=0}^{\infty}a_n(x-x_0)^n$ [/mm] für jedes x [mm] \in [/mm] I,

wobei [mm] a_n= \bruch{f^{(n)}(x_0)}{n!}. [/mm] Die Potenzreihe rechts in (*) konvergiert auf [a,b]  gleichmäßig gegen f.

Dann konvergiert auch


(**)  [mm] \summe_{n=0}^{\infty}a_nf(x)(x-x_0)^n [/mm]  

auf [a,b]  gleichmäßig gegen [mm] f^2. [/mm] Berechne damit und mit der Vor. $ [mm] \int\limits_a^b f(x)x^n [/mm] $ dx = 0 für n = 0, 1, ...  mal das Integral [mm] \integral_{a}^{b}{f(x)^2 dx} [/mm]


FRED



Bezug
        
Bezug
Beschränkte Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Mi 24.03.2010
Autor: fred97

Es geht unter weit schwächeren Voraussetzungen, wenn man den Approximationssatz von Weierstraß zur Verfügung hat.

Behauptung: Ist f [mm] \in [/mm] C[a,b] und gilt  $ [mm] \int\limits_a^b f(x)x^n [/mm] $ dx = 0 für n = 0, 1, ..., so ist f identisch Null auf [a,b] .

Beweis: aus dem Approximationssatz von Weierstraß erhlten wir eine Folge [mm] (p_n) [/mm] von Polynomen , welche auf [a,b]  gleichmäßig gegen f konvergiert. Dann konvergiert die Folge [mm] (fp_n) [/mm] auf [a,b] gleichmäßig gegen [mm] f^2. [/mm] Nach Vor. ist [mm] \integral_{a}^{b}{p_nf(x) dx}=0 [/mm] für jedes n, somit

   [mm] \integral_{a}^{b}{f(x)^2 dx}= [/mm] lim [mm] \integral_{a}^{b}{p_nf(x) dx}=0 [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]