matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationBeschränkte Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Beschränkte Abbildungen
Beschränkte Abbildungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Do 28.05.2009
Autor: WiebkeMarie

Aufgabe
Begründen Sie ob die folgenden Aussagen wahr oder falsch sind:

1) Die Ableitung einer stetigen reelwertigen Funktion auf einer beschränkten abgeschlossenen Teilmenge eines Banachraumes existiert und ist beschränkt.

2) Differenzierbare reellwertige Funktionen sind auf einer beschränkten abgeschlossenen Teilmenge eines Banachraumes beschränkt.

Hallo!
Ich komme bei diesen Aussagen nicht weiter...
Hab versucht ein Gegenbeispiel zu 2) zu formulieren, aber das hat nicht funktioniert, denn da die Teilmenge abgeschlossen und beschänkt ist, kann man auf ihr keine Funktion definieren die ins unendliche geht und daher müssen die Funktionen doch immer beschränkt sein. Daher würde ich sagen, dass das wahr ist, auch wenn meine Argumentation wohl mehr intuitiv ist.

Bei 1) habe ich gerade keine Ahnung.

Vielen Dank schonmal!

Liebe Grüße Wiebke


        
Bezug
Beschränkte Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Do 28.05.2009
Autor: Gonozal_IX

Hallo Wiebke (oder doch Marie?),

Bertrachte bei 1.) mal [mm] \sqrt{x}, [/mm] die abgeschlossene Teilmenge solltest du jedoch selbst finden ;-)

Bei 2.) Was weisst du über das Maximum und Minimum von stetigen Funktionen auf abgeschlossenen, beschränkten Räumen?

MfG,
Gono.

Bezug
                
Bezug
Beschränkte Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:53 Do 28.05.2009
Autor: pelzig


> Bei 2.) Was weisst du über das Maximum und Minimum von
> stetigen Funktionen auf abgeschlossenen, beschränkten Räumen?

Vorsicht: Für endlichdimensionale Banachräume stimmt die Aussage sicherlich, wegen Kompaktheit, aber was ist bei unendlichdimensionalen?

Gruß, Robert

Bezug
                        
Bezug
Beschränkte Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:17 Do 28.05.2009
Autor: Gonozal_IX

Da hab ich auch kurzzeitig dran gedacht, aber da tasten wir uns bestimmt gemeinsam ran ;-).

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]