matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikBeschleunigung Schraubenlinie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "HochschulPhysik" - Beschleunigung Schraubenlinie
Beschleunigung Schraubenlinie < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschleunigung Schraubenlinie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Mo 23.11.2009
Autor: hotblack

Aufgabe
Aus Platzgründen wurde in Japan die Abfahrt von einer hohen Straßenbrücke als Schrauben-
linie gestaltet. Bestimmen Sie die Beschleunigung für ein Kraftfahrzeug, das mit konstanter
Fahrgeschwindigkeit diese Abfahrt benutzt, in Abhängigkeit von Schraubenradius [mm]R[/mm] und Stei-
gungswinkel [mm]\alpha[/mm].

Hallo zusammen,

habe dieses Problem zuerst mal in zwei Teilprobleme zerlegt, einmal Kreisbewegung und einmal Bewegung auf der schiefen Ebene.
Beim ersten wirkt ja ganz normal die Rotationsbeschleunigung (da sich die Bahngeschwindigkeit nicht ändert):
[mm]a_r = \bruch{v^2}{R}[/mm]

Auf der schiefen Ebene wirkt die Hangabtriebskraft, die das Auto ja beschleunigen würde(in der Bahngeschwindigkeit), demzufolge muss hier eine negative Beschleunigung wirken:

[mm]F_H = F_G *sin\left(\alpha\right) = m*a[/mm]
also
[mm]a_H = g*sin\left(\alpha\right)[/mm]
und
[mm]a_{res} = \bruch{v^2}{R}-g*sin\left(\alpha\right)[/mm]

Freue mich über jegliche Kommentare, Korrekturen etc.

Wie immer in keinem anderen Forum gestellt.

Vielen Dank schonmal,
hotblack


        
Bezug
Beschleunigung Schraubenlinie: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Mo 23.11.2009
Autor: leduart

Hallo
Du kannst 2 Beschleunigungen, die nicht in derselben Richtung wirken nicht einfach durch ihre Beträge addieren!
Der Krümmungsradius einer Schraubenlinie ist auch nicht der Radius der Schraube. Auf ner Schraubenlinie kamm man nicht fahren, also muss die Fahrbahn wohl ne Wendelfläche sein, dann hat  der momentane Krümmungskreis wenigstens einen waagerechten Radius.
Gruss leduart

Bezug
                
Bezug
Beschleunigung Schraubenlinie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Mo 23.11.2009
Autor: hotblack

Hallo,

danke für die schnelle Antwort!

>  Der Krümmungsradius einer Schraubenlinie ist auch nicht
> der Radius der Schraube.

Ok, der Krümmungsradius ist
[mm]r_k = \bruch{1}{\kappa}[/mm] mit [mm]\kappa=\bruch{r}{r^2 + k^2}[/mm] und [mm]k=tan\left(\alpha\right)[/mm]
damit
[mm]r_k=r+\bruch{tan(\alpha)^2}{r}[/mm]

> Auf ner Schraubenlinie kamm man
> nicht fahren, also muss die Fahrbahn wohl ne Wendelfläche
> sein, dann hat  der momentane Krümmungskreis wenigstens
> einen waagerechten Radius.

Das ist schon klar, wenn ich das Auto aber als Massepunkt betrachte, kann der ja entlang der Schraubenlinie laufen und erfährt auch eine Beschleunigung, oder?
Also
[mm]a_r=r*\bruch{v^2}{r^2+tan(\alpha)^2}[/mm]

Muss nun noch eine Bremsbeschleunigung wirken, damit das Auto(der Massepunkt) während der Fahrt nach unten nicht beschleunigt wird(also die Bahngeschwindigkeit nicht steigt)?

Gruß,
hotblack

Bezug
                        
Bezug
Beschleunigung Schraubenlinie: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Mo 23.11.2009
Autor: leduart

Hallo
ja, die brauchst du, aber dann vektoriell die beiden hinschreiben, oder den Betrag richtig berechnen, wobei der Betrag recht sinnlos ist, es sei denn du willst aus der Haftreibung ausrechnen, wie schnell man max. fahren darf.
Gruss leduart

Bezug
                                
Bezug
Beschleunigung Schraubenlinie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 23.11.2009
Autor: hotblack

Hey,
>  ja, die brauchst du, aber dann vektoriell die beiden
> hinschreiben

Ok, ich habs mal mit den Kräften probiert:
[mm]\vec{F_z} = m\omega^2 r = m \vec{\omega}\times(\vec{\omega}\times\vec{r})[/mm]
nun ist [mm]\vec{\omega} = \omega*\vec{e_z}[/mm]
und damit
[mm]\vec{F_z}=m\omega^2\vec{e_z}\times(\vec{e_z}\times\vec{r})=-m\omega^2 r\vektor{cos(t)\\sin(t)\\0}[/mm]

Hangabtriebskraft:
[mm]\vec{F_H} = \vec{F_G}*sin(\alpha) = m*g*sin(\alpha)*\vektor{0\\0\\-1}=-m*g*sin(\alpha)*\vec{e_z}[/mm]

die resultierende Kraft demnach
[mm]\vec{F_{res}}=-m\omega^2 r \vektor{cos(t)\\sin(t)\\0}+m*g*sin(\alpha)*\vec{e_z}[/mm]

Bin ich so auf dem richtigen Weg?

Gruß,
hotblack

Bezug
                                        
Bezug
Beschleunigung Schraubenlinie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 Di 24.11.2009
Autor: leduart

Hallo
Die Hangabtriebskraft wirkt doch nicht in z-Richtung, sondern in Bahnrichtung, also in Richtung von [mm] \vec{v} [/mm] der Betrag ist richtig
im anderen Teil muss r auch der Radius des Krümmungskreises sein, nicht der der Schraubenlinie
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]