matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikBeschleunigung Drehbewegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "HochschulPhysik" - Beschleunigung Drehbewegung
Beschleunigung Drehbewegung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschleunigung Drehbewegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 03:54 Mi 11.08.2010
Autor: T_sleeper

Aufgabe
Betrachte einen Massenpunkt in Drehbewegung (r=const) in einer Ebene. Man zeige, dass die Beschleunigung als [mm] \vec{a}=\frac{dv}{dt}\vec{e}_{v}-\frac{v^{2}}{r}\vec{e}_{r} [/mm] ausgedrückt werden kann, wobei [mm] \vec{e}_{v}=\frac{\vec{v}}{v} [/mm] und analog [mm] \vec{e}_{r}=\frac{\vec{r}}{r}. [/mm]

Schreibe dazu [mm] \vec{v}=v\vec{e}_{v}, [/mm] zeige, dass [mm] \frac{d\vec{e}_{v}}{dt} [/mm] parallel zu [mm] \vec{e}_{r} [/mm] ist und bestimme den Betrag von [mm] \frac{d\vec{e}_{v}}{dt} [/mm] ausgehend von der Gleichung [mm] \vec{e}_{r}\cdot\vec{e}_{v}=0. [/mm]

Hallo,

also ich bin schon recht weit gekommen. Der letzte Schritt fehlt wohl noch.

Wenn ich schreibe: [mm] \vec{v}=v\vec{e}_{v} [/mm] und weiß, dass [mm] \vec{a}=\frac{d\vec{v}}{dt}=\frac{dv}{dt}\cdot\vec{e}_{v}+v\frac{d\vec{e}_{v}}{dt}. [/mm] Jetzt muss ich halt irgendwie was mit dem [mm] \frac{d\vec{e}_{v}}{dt} [/mm] anfangen.

Ich habe schon verifiziert, dass [mm] \frac{dr}{dt}=\vec{e}_{r}\cdot\vec{v} [/mm] gilt.

Da [mm] r=const\Rightarrow\frac{dr}{dt}=\vec{e}_{r}\cdot\vec{v}=0\Rightarrow\vec{e}_{r}\perp\vec{v}. [/mm] Nun konnte ich auch noch nachrechnen, dass gilt: [mm] \vec{e}_{v}\cdot\frac{d\vec{e}_{v}}{dt}=0\Rightarrow\vec{e}_{v}\perp\frac{d\vec{e}_{v}}{dt}\Rightarrow\vec{v}\perp\frac{d\vec{e}_{v}}{dt}. [/mm] Daraus folgt dann [mm] \vec{e}_{r}||\frac{d\vec{e}_{v}}{dt}. [/mm]

Weiterhin folgt aus [mm] \vec{e}_{r}\cdot\vec{v}=0, [/mm] dass [mm] \vec{e}_{r}\cdot\vec{e}_{v}=0\Rightarrow\vec{e}_{r}\perp\vec{e}_{v}. [/mm]

[mm] \vec{e}_{r}\cdot\vec{e}_{v}=0\Rightarrow0=d_{t}(\vec{e}_{r}\cdot\vec{e}_{v})=d_{t}\vec{e}_{r}\cdot\vec{e}_{v}+\vec{e}_{r}\cdot d_{t}\vec{e}_{v}=\frac{\vec{v}}{v}\frac{1}{r}\cdot\frac{d\vec{r}}{dt}+\vec{e}_{r}\cdot d_{t}\vec{e}_{v}=\frac{v}{r}+\vec{e}_{r}\cdot d_{t}\vec{e}_{v}. [/mm]

Wie komme ich jetzt zum Betrag von [mm] d_{t}\vec{e}_{v}? [/mm] Ich kann ja nun nicht einfach auf die Gleichung den Betrag draufhauen...

Braucht man da irgendwie die Parallelität. Die habe ich noch nirgends angewandt. Aber ich sehe nicht wie ich das anwenden soll?

        
Bezug
Beschleunigung Drehbewegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Fr 13.08.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]