matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBerührungspkt reelle Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Berührungspkt reelle Funktion
Berührungspkt reelle Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührungspkt reelle Funktion: Vorgehensweise beim Lösen
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 04.01.2010
Autor: Hotte3012

Aufgabe
Sei f : A [mm] \rightarrow\ [/mm] R eine reelle Funktion auf A [mm] \subset [/mm] R und a ein Berührpunkt von A.
Bestimmen Sie [mm] \limes_{z\rightarrow\a} [/mm] f(z) für
a) f(z) = [mm] \wurzel[4]{2+z}/(1-\wurzel{z}); [/mm] A = [mm] \IR\backslash((-\infty,0)\cup{1}); [/mm] a=0
b) f(z) = [mm] (e^{z}+e^{-z}-2)/z^{2}; [/mm] A = [mm] \IR\backslash{0}; [/mm] a=0

Ich weiß nicht einmal, wie ich bei dieser Aufgabe beginnen soll. Kann mir jemand helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berührungspkt reelle Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mo 04.01.2010
Autor: tobit09

Hallo Hotte3012 und [willkommenmr]!

zu a):
Um [mm]\limes_{z\rightarrow 0}\wurzel[4]{2+z}/(1-\wurzel{z})[/mm] zu bestimmen, würde ich erstmal folgende Limiten bestimmen:
[mm]\limes_{z\rightarrow 0} 2[/mm], [mm]\limes_{z\rightarrow 0} z[/mm], [mm]\limes_{z\rightarrow 0} 2+z[/mm], [mm]\limes_{z\rightarrow 0} \wurzel[4]{2+z}[/mm], [mm]\limes_{z\rightarrow 0} \wurzel{z}[/mm], [mm]\limes_{z\rightarrow 0} (1-\wurzel{z})[/mm] und schließlich den gesuchten Limes.

zu b):
Wenn du hier (wie bei a)) die Limiten von Zähler und Nenner bestimmst, stellst du fest, das beide Male 0 herauskommt. Das ist eine Steilvorlage zur Anwendung des Satzes von l'Hospital (ich hoffe, den hattet ihr?).

Viele Grüße
Tobias

Bezug
                
Bezug
Berührungspkt reelle Funktion: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Mo 04.01.2010
Autor: Hotte3012

es soll heißen z-->a. Wird wohl nicht richtig dargestellt. Sorry. Danke trotzdem erstmal für dein Interesse. Soll ich dann einfach mal z gegen a laufen lassen und schauen, was passiert? Das Problem für mich ist nur, dass das ganze gegen keinen konkreten Wert laufen wird. Zumindest, wie ich das sehe.

Bezug
                        
Bezug
Berührungspkt reelle Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Mo 04.01.2010
Autor: Hotte3012

Oh doch.... a=0... Naja, bin selbst dran blöd. Danke.

Bezug
        
Bezug
Berührungspkt reelle Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:25 Mo 04.01.2010
Autor: Hotte3012

Aufgabe
siehe oben

die obige frage ist noch nicht beantwortet. zumindest nicht für mich, weil ich immer noch nicht wiß, was ich zu tun habe. bin dankbar für jegliche hilfe.

Bezug
                
Bezug
Berührungspkt reelle Funktion: Aufgabe a)
Status: (Antwort) fertig Status 
Datum: 23:51 Mo 04.01.2010
Autor: tobit09

Ich probiere es nochmal, vielleicht kannst du dann konkreter nachfragen, wo es hakt?

Dass bei a) [mm]\limes_{z\rightarrow 0}\wurzel[4]{2+z}/(1-\wurzel{z})[/mm] gesucht ist, ist noch klar oder eher nicht?

Weißt du was [mm]\limes_{z\rightarrow 0}2[/mm] und [mm]\limes_{z\rightarrow 0}z[/mm] sind? Weißt du, wie du damit [mm]\limes_{z\rightarrow 0}(2+z)[/mm] bestimmen kannst?

Bezug
                        
Bezug
Berührungspkt reelle Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Mi 06.01.2010
Autor: Hotte3012

Natürlich weiß ich, wie man Grenzwerte oder Limes ausrechnet. Lasse ich die Funktion einfach gegen den Berührungspunkt a=0 laufen und dafür dürfen dann nur Werte zwischen -unendlich und 0 (ohne -unendlich und 0) oder die 1 herauskommen? Mir war in diesem Fall bloß nicht klar, wie einfach die Aufgabe dann gestrickt sein muss.
Danke für die Hilfe.

Bezug
                                
Bezug
Berührungspkt reelle Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Mi 06.01.2010
Autor: tobit09


> Lasse ich die Funktion einfach gegen den
> Berührungspunkt a=0 laufen

Ja, genau.

> und dafür dürfen dann nur
> Werte zwischen -unendlich und 0 (ohne -unendlich und 0)
> oder die 1 herauskommen?

Nein, das stimmt so leider nicht. Der DEFINITIONSBEREICH A der Funktion f besteht aus allen Zahlen, die NICHT echt zwischen -unendlich und 0 liegen und NICHT 1 sind. Über den Limes von f(x) für x gegen 0 sagt das nichts aus.

Bezug
                
Bezug
Berührungspkt reelle Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Do 07.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]