matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenBerührpunkte im Def-Bereich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Berührpunkte im Def-Bereich
Berührpunkte im Def-Bereich < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkte im Def-Bereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Di 13.11.2012
Autor: piriyaie

Aufgabe
[mm] f(x)=2x^{2}+1 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

vorab schonmal danke für die Beantwortung meiner letzten Frage an Steffi.

Außerdem sollen wir für die oben genannte Funktion die Menge der Berührpunkte des Definitionsbereichs angeben.

Wäre dies korrekt: M = { }???

Der Graph berührt ja weder die x-Achse noch die y-Achse und außerdem ist der Graph allein also kann er auch keinen anderen berühren. Er schneidet lediglich die y-Achse.

Oder ist da was anderes gefragt?

Danke schon mal.

Grüße
Ali

        
Bezug
Berührpunkte im Def-Bereich: Antwort
Status: (Antwort) fertig Status 
Datum: 06:21 Mi 14.11.2012
Autor: fred97


> [mm]f(x)=2x^{2}+1[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  
> vorab schonmal danke für die Beantwortung meiner letzten
> Frage an Steffi.
>  
> Außerdem sollen wir für die oben genannte Funktion die
> Menge der Berührpunkte des Definitionsbereichs angeben.
>  
> Wäre dies korrekt: M = { }???
>  
> Der Graph berührt ja weder die x-Achse noch die y-Achse
> und außerdem ist der Graph allein also kann er auch keinen
> anderen berühren. Er schneidet lediglich die y-Achse.
>  
> Oder ist da was anderes gefragt?

Ja.

Ist D eine Teilmenge von [mm] \IR, [/mm] wie habt Ihr def.: "x [mm] \in \IR [/mm] ist Berührpunkt von D " ?

Der Def.-bereich der obigen Funktion ist [mm] D=\IR. [/mm]

FRED

>  
> Danke schon mal.
>  
> Grüße
>  Ali


Bezug
                
Bezug
Berührpunkte im Def-Bereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:48 Mi 14.11.2012
Autor: piriyaie

Also wir haben es so definiert:

Seien M eine Teilmenge von R und a∈R, so heißt a Berührpunkt von M, falls zu jedem ε>0 in der Menge
(a-ε, a+ε)
mindestens ein Punkt in M liegt.
Anschaulich bedeutet dies, dass inf {|a-m|; m∈M} = 0.

Das D = [mm] \IR [/mm] ist weiß ich.

Was mache ich nun?

Danke schonmal.

Grüße
Ali

Bezug
                        
Bezug
Berührpunkte im Def-Bereich: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Mi 14.11.2012
Autor: fred97


> Also wir haben es so definiert:
>  
> Seien M eine Teilmenge von R und a∈R, so heißt a
> Berührpunkt von M, falls zu jedem ε>0 in der Menge
>  (a-ε, a+ε)
>  mindestens ein Punkt in M liegt.
>  Anschaulich bedeutet dies, dass inf {|a-m|; m∈M} = 0.
>  
> Das D = [mm]\IR[/mm] ist weiß ich.
>  
> Was mache ich nun?

Bestimme die Berührpunkte von [mm] \IR [/mm] !!

FRED

>  
> Danke schonmal.
>  
> Grüße
>  Ali


Bezug
                                
Bezug
Berührpunkte im Def-Bereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Mi 14.11.2012
Autor: piriyaie

Ist dieses Ergebnis richtig:

M = ( - [mm] \infty [/mm] ; + [mm] \infty [/mm] )

???

Bezug
                                        
Bezug
Berührpunkte im Def-Bereich: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mi 14.11.2012
Autor: fred97


> Ist dieses Ergebnis richtig:
>  
> M = ( - [mm]\infty[/mm] ; + [mm]\infty[/mm] )

Wenn Du sagst, was M ist, vielleicht.

FRED

>  
> ???


Bezug
                                                
Bezug
Berührpunkte im Def-Bereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 14.11.2012
Autor: piriyaie

M soll ja die Menge der Berührpunkte im Def.-Bereich sein.

Bezug
                                                        
Bezug
Berührpunkte im Def-Bereich: Antwort
Status: (Antwort) fertig Status 
Datum: 05:49 Do 15.11.2012
Autor: fred97


> M soll ja die Menge der Berührpunkte im Def.-Bereich sein.

Dann stimmts

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]