matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenBerührpunktansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Berührpunktansatz
Berührpunktansatz < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunktansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 So 30.03.2008
Autor: mary-.-

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gegeben ist die Funktion 3/50000 [mm] x^3 [/mm] - 41/625 [mm] x^2 [/mm] + 1789/50 + 15000

( / entspricht dem Bruchzeichen)

x [0;1200]

Vom Ursprung wird die Tangente an das Schaubild von K gelegt. Bestimmen Sie die Steigung der Tangente.

Also, so viel ich weiß, erhält man die Steigung in dem Berührpunkt durch die 1. Ableitung. Aber dann weiß ich nicht so recht was ich machen soll. Wir rechnen ohne der Berührpunktformel.
Hoffe es kann mir jemand sagen, wie ich diese Aufg. lösen kann.

        
Bezug
Berührpunktansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 30.03.2008
Autor: Mr._Calculus

Hallo mary,

kann es sein, dass in der Aufgabenstellung ein "x" fehlt bei [mm] \bruch{1789}{50} [/mm] ?

Für die Gerade durch den Ursprung gilt:
[mm]g(x)= m*x[/mm]

Für einen Berührpunkt muss gelten:
[mm]f(x_{0})=g(x_{0})[/mm] und
[mm]f'(x_{0})=g'(x_{0})[/mm]

Damit solltest du weiterkommen.

Gruss Mr._Calculus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]