matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBernstein Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Bernstein Polynom
Bernstein Polynom < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernstein Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Mo 12.12.2005
Autor: kuminitu

Hallo,

ich habe große Probleme mit der folgenden Aufgabe:

Ziel der Aufgabe ist die Auswertung des Bersteinpolynoms
[mm] B_{n}(x) [/mm] =  [mm] \summe_{k=0}^{n}$b_{k}$ $\vektor{n \\ k}$$x^{k}$ $(1-x)^{n-k}$ [/mm]
an einer gegebenen Stelle x  [mm] \varepsilon [/mm] [0,1].
[mm] x^{n}_{b} [/mm]
Für m=0,...,n und i=0,...,n - m sei dazu

[mm] B^{i}_{m} [/mm] :=  [mm] $\summe_{k=0}^{m}$ $b_{k+i}$ $\vektor{m \\ k}$$x^{k}$ $(1-x)^{m-k}$ [/mm]  ,
insbesondere also [mm] B_{n} [/mm] = [mm] $B_{n}$(x) [/mm]

Zeigen Sie:
1) [mm] $B^{i}_{0}$ [/mm] = [mm] $b_{i}$ [/mm]    für i = 0,....,n

2) [mm] B^{i}_{m} [/mm] = (1 - [mm] x)$B^{i}_{m-1}$ [/mm] + [mm] x$B^{i+1}_{m-1}$ [/mm]
für m = 1,...,n und i=0,...,n-m

Ich brauche dringend Hilfe bei der Aufgabe, ich habe keinen Ansatz zur Lösung gefunden!
MFG
Kuminitu

        
Bezug
Bernstein Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Di 13.12.2005
Autor: Stefan

Hallo kuminito!

Teil 1) ist ja trivial; bei Teil 2) gehst du wie folgt vor:

[mm] $B_m^i [/mm] = [mm] \sum\limits_{k=0}^m b_{k+i} [/mm] {m [mm] \choose [/mm] k} [mm] \cdot x^k \cdot (1-x)^{m-k}$ [/mm]

[mm] $=b_i [/mm] + [mm] \sum\limits_{k=1}^m b_{k+i} \cdot \left[ {{m-1} \choose k} + {{m-1} \choose {k-1}} \right] \cdot x^k \cdot (1-x)^{m-k}$ [/mm]

[mm] $=\sum\limits_{k=0}^m b_{k+i} [/mm] {{m-1} [mm] \choose [/mm] k} [mm] x^k (1-x)^{m-k} [/mm] + [mm] \sum\limits_{k=1}^m b_{k+i} [/mm] {{m-1} [mm] \choose [/mm] {k-1}} [mm] x^k (1-x)^{m-k}$ [/mm]

$= (1-x) [mm] \sum\limits_{k=0}^{m-1} b_{k+i} [/mm] {{m-1} [mm] \choose [/mm] k} [mm] x^k (1-x)^{m-1-k} [/mm] + x [mm] \sum\limits_{k=1}^m b_{k+i} [/mm] {{m-1} [mm] \choose [/mm] {k-1}} [mm] x^{k-1} (1-x)^{(m-1)-(k-1)}$ [/mm]

$= (1-x) [mm] \cdot B_{m-1}^i [/mm] + x [mm] \sum\limits_{k=0}^{m-1} b_{k+i+1} [/mm] {{m-1} [mm] \choose [/mm] {k}} [mm] x^{k} (1-x)^{(m-1)-k}$ [/mm]

$=(1-x) [mm] \cdot B_{m-1}^i [/mm] + x [mm] \cdot B_{m-1}^{i+1}$. [/mm]

Liebe Grüße
Stefan

Bezug
                
Bezug
Bernstein Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 13.12.2005
Autor: kuminitu

Hallo,
danke erst mal für deine Hilfe, hat mir sehr geholfen!!

Habe jetzt noch eine Frage zu 1)

Ist $ [mm] B^{i}_{o} [/mm] $ so festgelegt(?):
[mm]B^{i}_{0}[/mm] :=  [mm]\summe_{k=0}^{0}[/mm] [mm]b_{k+i}[/mm] [mm]\vektor{0 \\ k}[/mm][mm]x^{k}[/mm]
[mm](1-x)^{-k}[/mm]  ,




Bezug
                        
Bezug
Bernstein Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Fr 16.12.2005
Autor: Stefan

Hallo!

Ja, es gilt:

[mm] $B_0^i [/mm] = [mm] \sum\limits_{k=0}^0 b_{k+i} [/mm] {0 [mm] \choose [/mm] k} [mm] x^k (1-x)^{0-k} [/mm] = [mm] b_i \cdot [/mm] {0 [mm] \choose [/mm] 0} [mm] \cdot x^0 \cdot (1-x)^{0-0} [/mm] = [mm] b_i$. [/mm]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]