matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBernstein-Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Bernstein-Polynome
Bernstein-Polynome < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernstein-Polynome: Verständisprobleme
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 09.04.2011
Autor: SolRakt

Hallo,

Und zwar hatten wir in der Vorlesung kurz über die Bernstein-Polynome gesprochen, dennoch verstehe ich das nicht:

Wir haben irgendwie das Intervall [0,1] betrachtet (keine Ahnung, warum) und dann den Binomialsatz angewandt:

Mein Dozent sprach von der Zerlegung der 1.

[mm] (A+B)^{n} [/mm] = [mm] \summe_{j=0}^{n}\vektor{n \\ j}A^{j}B^{n-j} [/mm]

So, jetzt sei A=x und B=1-x

Dann folgt: [mm] \summe_{j=0}^{n}1*\vektor{n \\ j}x^{j}(1-x)^{n-j} [/mm]

Und dann hat er das Bernstein-Polynom definiert, also:

[mm] p_{n}(x) [/mm] := [mm] \summe_{j=0}^{n}f(\bruch{j}{n})*\vektor{n \\ j}x^{j}(1-x)^{n-j} [/mm]

Dabei soll nun die 1 durch f(...) ersetzt worden sein.

Aber irgendwie verstehe ich die Ansätze nicht. Wieso möchte ich die 1 zerlegen und wieso ersetze ich die 1 dann durch f(...)?

Kann mir vllt jemand Schritt für Schritt sagen, wie man überhaupt auf die Ideen kommt?

Danke vielmals.



        
Bezug
Bernstein-Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Sa 09.04.2011
Autor: Al-Chwarizmi


> Hallo,
>  
> Und zwar hatten wir in der Vorlesung kurz über die
> Bernstein-Polynome gesprochen, dennoch verstehe ich das
> nicht:
>  
> Wir haben irgendwie das Intervall [0,1] betrachtet (keine
> Ahnung, warum) und dann den Binomialsatz angewandt:
>  
> Mein Dozent sprach von der Zerlegung der 1.
>  
> [mm](A+B)^{n}[/mm] = [mm]\summe_{j=0}^{n}\vektor{n \\ j}A^{j}B^{n-j}[/mm]
>  
> So, jetzt sei A=x und B=1-x

Hier haben wir doch die erste "Zerlegung der 1" :   es ist  1 = A+B

> Dann folgt: [mm]\summe_{j=0}^{n}1*\vektor{n \\ j}x^{j}(1-x)^{n-j}[/mm]      [haee]

Dies sollte wohl so lauten:

       [mm]1\ =\ \summe_{j=0}^{n}\vektor{n \\ j}\ x^{j}\ (1-x)^{n-j}[/mm]

und dies ist eine "Zerlegung der Eins" in (n+1) Summanden

  

> Und dann hat er das Bernstein-Polynom definiert, also:
>  
> [mm]p_{n}(x)[/mm] := [mm]\summe_{j=0}^{n}f(\bruch{j}{n})*\vektor{n \\ j}x^{j}(1-x)^{n-j}[/mm]
>  
> Dabei soll nun die 1 durch f(...) ersetzt worden sein.     [haee]
>  
> Aber irgendwie verstehe ich die Ansätze nicht. Wieso
> möchte ich die 1 zerlegen und wieso ersetze ich die 1 dann
> durch f(...)?
>  
> Kann mir vllt jemand Schritt für Schritt sagen, wie man
> überhaupt auf die Ideen kommt?
>  
> Danke vielmals.


Links zum Thema "Zerlegung der Eins":

   http://de.wikipedia.org/wiki/Zerlegung_der_Eins

   http://de.wikipedia.org/wiki/Bernsteinpolynom#Eigenschaften

Dort steht für die Zerlegung der Eins (auch Partition der Eins)
folgende Formel:

    [mm] \sum_{i=0}^n B_{i,n}(t) [/mm] = [mm] \sum_{i=0}^n{n \choose i} t^i (1-t)^{n-i} [/mm] = 1

LG




Bezug
                
Bezug
Bernstein-Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Sa 09.04.2011
Autor: SolRakt

Danke. :)

Aber ich habe alles richtig aufgeschrieben. Mein Dozent hat die 1 darein geschrieben ;)

Nur was er damit meint, versteh ich auch nicht :(

Bezug
                        
Bezug
Bernstein-Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Sa 09.04.2011
Autor: Al-Chwarizmi


> Danke. :)
>  
> Aber ich habe alles richtig aufgeschrieben. Mein Dozent hat
> die 1 darein geschrieben ;)
>  
> Nur was er damit meint, versteh ich auch nicht :(


Warum er das so gemacht hat und was er genau gemeint
hat, weiß ich auch nicht. Das hat er vermutlich in seinem
Vortrag erklärt, aber nicht aufgeschrieben ...

Es folgte ja dann die Definition.
Und bekanntlich kann man Definitionen weder herleiten
noch beweisen, sondern allenfalls plausibel machen.

Am besten fragst du wohl beim Dozenten oder bei Kom-
militonen oder einem Assistenten nach !

LG    Al-Chw.


Bezug
                                
Bezug
Bernstein-Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:07 So 10.04.2011
Autor: SolRakt

Danke :)

Ok, das werd ich dann mal machen ;)

Ich dachte, dass es etwas tiefliegendes wäre, was ich nicht verstanden hätte.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]