matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBernoullische Differentialglei
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Bernoullische Differentialglei
Bernoullische Differentialglei < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoullische Differentialglei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Sa 18.03.2006
Autor: Alpha23

Aufgabe
Bestimmen Sie für [mm]\alpha, a, b \in \IR, a, b, >0, \alpha>1[/mm] sämtliche positiven Lösungen der Differentialgleichung
[mm]y'=ay+by^{\alpha}[/mm]
Hinweis: Verwenden sie die Substitution [mm]z=y^{1-\alpha}[/mm]

Lösung:
Substituiert man [mm]z=y^{1-\alpha}[/mm] so folgt [mm]z'=(1-\alpha)y^{-\alpha}y'=(1-\alpha)z^{-\bruch{\alpha}{1-\alpha}}[/mm] also [mm]y'=(1-\alpha)^{-1}z'z^{\bruch{\alpha}{1-\alpha}}.[/mm]
Setzen wir dies in die Differentialgleichung ein, so erhalten wir

[mm](1-\alpha)^{-1}z'z^{\bruch{\alpha}{1-\alpha}}=az^{\bruch{1}{1-\alpha}}+bz^{\bruch{\alpha}{1-\alpha}}.[/mm]

Multipliziert man nun beide Seiten der Gleichung mit [mm]z^{-\bruch{\alpha}{1-\alpha}}[/mm] so erhält man die Gleichung

[mm]z'=(1-\alpha)az+(1-\alpha)b,[/mm]

welche man mit Variation der Konstanten löst. Man erhält

[mm]z(x)=\varphi(x)\left( c-\integral_{}^{}{\bruch{(1-\alpha)b(t)}{\varphi(t)}dt}\right)[/mm]

mit der homogenen Lösung

[mm]\varphi(x)=exp\left(\integral_{0}^{x}{(1-\alpha)a(t)dt\right)[/mm]

Die gesuchte Lösung y ist nun durch [mm]y=z^{\bruch{1}{1-\alpha}}[/mm] gegeben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Frage dazu: Warum darf als Startwert denn einfach [mm]x_{0}=0[/mm] gwählt werden? Warum kommen in der Lösung nirgends die Integrale der Funktionen [mm]a(t)[/mm] und [mm]b(t)[/mm] vor?

Gruß
               Timo

        
Bezug
Bernoullische Differentialglei: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Sa 18.03.2006
Autor: Astrid

Hallo Timo,

> Bestimmen Sie für [mm]\alpha, a, b \in \IR, a, b, >0, \alpha>1[/mm]
> sämtliche positiven Lösungen der Differentialgleichung
>  [mm]y'=ay+by^{\alpha}[/mm]
>  Hinweis: Verwenden sie die Substitution [mm]z=y^{1-\alpha}[/mm]
>  
> Lösung:
>  Substituiert man [mm]z=y^{1-\alpha}[/mm] so folgt
> [mm]z'=(1-\alpha)y^{-\alpha}y'=(1-\alpha)z^{-\bruch{\alpha}{1-\alpha}}[/mm]
> also [mm]y'=(1-\alpha)^{-1}z'z^{\bruch{\alpha}{1-\alpha}}.[/mm]
>  Setzen wir dies in die Differentialgleichung ein, so
> erhalten wir
>  
> [mm](1-\alpha)^{-1}z'z^{\bruch{\alpha}{1-\alpha}}=az^{\bruch{1}{1-\alpha}}+bz^{\bruch{\alpha}{1-\alpha}}.[/mm]
>  
> Multipliziert man nun beide Seiten der Gleichung mit
> [mm]z^{-\bruch{\alpha}{1-\alpha}}[/mm] so erhält man die Gleichung
>  
> [mm]z'=(1-\alpha)az+(1-\alpha)b,[/mm]
>  
> welche man mit Variation der Konstanten löst.

[ok] Soweit klar?

> Man erhält
>  
> [mm]z(x)=\varphi(x)\left( c-\integral_{}^{}{\bruch{(1-\alpha)b(t)}{\varphi(t)}dt}\right)[/mm]
>  
> mit der homogenen Lösung
>
> [mm]\varphi(x)=exp\left(\integral_{0}^{x}{(1-\alpha)a(t)dt\right)[/mm]
>  
> Die gesuchte Lösung y ist nun durch
> [mm]y=z^{\bruch{1}{1-\alpha}}[/mm] gegeben.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Meine Frage dazu: Warum darf als Startwert denn einfach
> [mm]x_{0}=0[/mm] gwählt werden?

Die Menge aller homogenen Lösungen ist ja gegeben durch $c [mm] \cdot \varphi(x)$ [/mm] für ein $c [mm] \in \IR$. [/mm] Wenn du den Startwert im Integral änderst, dann ändert sich die Funktion [mm] \varphi [/mm] nur um eine multiplikative Konstante. Also

[mm]e^{\int_{-1}^x \ldots}=e^{\int_{-1}^0 \ldots + \int_0^x \ldots}[/mm].

Die allgemeine Lösung beinhaltet ja wieder eine Konstante, da du keinen Startwert vorgegeben hattest. Die Lösungsmenge ist also eine Schar von Funktionen.

>  Warum kommen in der Lösung nirgends
> die Integrale der Funktionen [mm]a(t)[/mm] und [mm]b(t)[/mm] vor?

[verwirrt] Wieso denn? In der Bestimmung von [mm] $\varphi(x)$ [/mm] und [mm]z(x)[/mm] kommen doch a und b vor?!

Viele Grüße
Astrid

Bezug
                
Bezug
Bernoullische Differentialglei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Sa 18.03.2006
Autor: Alpha23

Hallo!

Ich meine, warum die beiden Funktionen in der Lösung [mm]y=z^{\bruch{1}{1-\alpha}}[/mm] nicht mehr vorkommen.

Timo

Bezug
                        
Bezug
Bernoullische Differentialglei: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 18.03.2006
Autor: Astrid

Hallo Timo,

> Hallo!
>  
> Ich meine, warum die beiden Funktionen in der Lösung
> [mm]y=z^{\bruch{1}{1-\alpha}}[/mm] nicht mehr vorkommen.

aber sie kommen doch vor! Denn sie stecken in der Funktion [mm]z(x)[/mm]! Der letzte Schritt ist dann nur noch die Rücksubstitution!

Viele Grüße
Astrid

Bezug
                                
Bezug
Bernoullische Differentialglei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Sa 18.03.2006
Autor: Alpha23

Aua! Ja, danke, voll übersehen! ;)

Bezug
        
Bezug
Bernoullische Differentialglei: Ergänzung
Status: (Antwort) fertig Status 
Datum: 18:39 Sa 18.03.2006
Autor: Astrid

Hallo Timo,

noch eine kleine Ergänzung, da du ja keine Funktionen $a(t)$ und $b(t)$ hast, sondern Konstanten. Deshalb kannst du die Lösungen ja noch vereinfachen:

> [mm]z'=(1-\alpha)az+(1-\alpha)b,[/mm]

> [mm]z(x)=\varphi(x)\left( c-\integral_{}^{}{\bruch{(1-\alpha)b(t)}{\varphi(t)}dt}\right)[/mm]
>  
> mit der homogenen Lösung
>
> [mm]\varphi(x)=exp\left(\integral_{0}^{x}{(1-\alpha)a(t)dt\right)[/mm]
>  
> Die gesuchte Lösung y ist nun durch
> [mm]y=z^{\bruch{1}{1-\alpha}}[/mm] gegeben.

Nach Integration kommst du auf

[mm]\varphi(x)=e^{(1-\alpha)at}[/mm]

und daher

[mm]z(x)=e^{(1-\alpha)at}\left(c-(1-\alpha)b \int e^{(\alpha-1)at} \, dt \right)[/mm]
[mm]= \ldots = c e^{(1-\alpha)at}+\bruch{b}{a}[/mm].

Fehlt dann nur noch die Rücksubstitution.

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]