matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikBernoulli Kette
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Bernoulli Kette
Bernoulli Kette < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli Kette: x Kleiner als k
Status: (Frage) beantwortet Status 
Datum: 20:56 Mi 25.03.2015
Autor: b.reis

Aufgabe
P= (n= 20 p =0,2 [mm] (X\le [/mm] 1))


Hallo,

leider weiß ich nicht wie ich das rechnen soll. Wenn ich rechne [mm] \vektor{n \\ k}*p^k*(1-p)^{n-k} [/mm]

also [mm] \vektor{20 \\ 1} *0,2^1*(1-0,2)^{20-1} [/mm] dann kommt nicht das richtige Ergebnis raus, 0,057...

Muss ich über das Gegenereignis gehen ?


Danke

benni

        
Bezug
Bernoulli Kette: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mi 25.03.2015
Autor: abakus


> P= (n= 20 p =0,2 [mm](X\le[/mm] 1))
> Hallo,

>

> leider weiß ich nicht wie ich das rechnen soll. Wenn ich
> rechne [mm]\vektor{n \\ k}*p^k*(1-p)^{n-k}[/mm]

>

> also [mm]\vektor{20 \\ 1} *0,2^1*(1-0,2)^{20-1}[/mm] dann kommt
> nicht das richtige Ergebnis raus, 0,057...

>

> Muss ich über das Gegenereignis gehen ?

>
>

> Danke

>

> benni

Hallo Benni,
[mm] $X\le [/mm] 1$ bedeutet, dass X den Wert 0 oder den Wert 1 annehmen kann. Du hast bisher nur die Wahrscheinlichkeit für X=1 berechnet.

Bezug
                
Bezug
Bernoulli Kette: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:45 Do 26.03.2015
Autor: b.reis

P= (n= 20 p =0,2 $ [mm] (X\le [/mm] $ 1))  
> Hallo,  

>

> leider weiß ich nicht wie ich das rechnen soll. Wenn ich  
> rechne $ [mm] \vektor{n \\ k}\cdot{}p^k\cdot{}(1-p)^{n-k} [/mm] $  

>

> also $ [mm] \vektor{20 \\ 1} \cdot{}0,2^1\cdot{}(1-0,2)^{20-1} [/mm] $ dann kommt  
> nicht das richtige Ergebnis raus, 0,057...  

>

> Muss ich über das Gegenereignis gehen ?  

>
>

> Danke  

>

> benni  

Hallo Benni,
$ [mm] X\le [/mm] 1 $ bedeutet, dass X den Wert 0 oder den Wert 1 annehmen kann. Du hast bisher nur die Wahrscheinlichkeit für X=1 berechnet.

Ich habe keine Ahnung wie ich das berechnen soll.
Also müsste ich für x annehemen X [mm] \ge [/mm] 2, über das Gegenereignis ? Gibt es für die Berechnung von 0 und 1 eine Formel, oder muss ich diese Wahrscheinlichkeiten addieren , also die Wahrscheinlichkeit von 0 und 1 ?

MFG Benni


Bezug
                        
Bezug
Bernoulli Kette: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Do 26.03.2015
Autor: chrisno

Du musst mal einen Schritt zurücktreten. Dann siehst Du, dass Du Dich irgendwie verrannt hast.
Mit $ [mm] \vektor{20 \\ 1} \cdot{}0,2^1\cdot{}(1-0,2)^{20-1} [/mm] $ hast Du die Wahrscheinlichkeit für X=1 berechnet. Es fehlt nur noch die Wahrscheinlichkeit für X=0.

> Ich habe keine Ahnung wie ich das berechnen soll.

Steht schon bei Abakus, ich habe es noch einmal aufgeschrieben.

> Also müsste ich für x annehemen X $ [mm] \ge [/mm] $ 2, über das Gegenereignis ?

Nein, das musst Du nicht, es geht viel einfacher.

> Gibt es für die Berechnung von 0 und 1 eine Formel,

das lohnt nicht, weil:

> oder muss ich diese Wahrscheinlichkeiten addieren , also die Wahrscheinlichkeit von 0 und 1 ?

Genau das ist es.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]