matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseBernoulli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - Bernoulli
Bernoulli < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli: Idee?
Status: (Frage) beantwortet Status 
Datum: 18:29 Mi 08.01.2014
Autor: gotoxy86

Aufgabe
Zeigen Sie durch vollständige Induktion: [mm] n!\le\left(\br{n}{2}\right)^n [/mm] für [mm] n\ge6 [/mm]

für [mm]n=6[/mm]: [mm]720=729[/mm]

[mm] (m+1)!=(m+1)m!\le(m+1)\left(\br{m}{2}\right)^m=2\left(\br{m}{m+1}\right)^m\left(\br{m+1}{2}\right)^{m+1} [/mm]

Aus der Bernoullischen Ungleichung folgt:

[mm] \left(\br{m+1}{m}\right)^m=\left(1+\br{1}{m}\right)^m\ge1+1\Rightarrow2\left(\br{m}{m+1}\right)^m\le1 [/mm]

Also erhält man:

[mm] (m+1)!\le\left(\br{m+1}{2}\right)^{m+1} [/mm]

Wofür sind diese Zwischenschritte da, und was hat man gemacht? Ich versteh den Bernoulli dort nicht.

Und was ist eine Induktionsverankerung?

        
Bezug
Bernoulli: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mi 08.01.2014
Autor: schachuzipus

Hallo,


> Zeigen Sie durch vollständige Induktion:
> [mm]n!\le\left(\br{n}{2}\right)^n[/mm] für [mm]n\ge6[/mm]
> für [mm]n=6[/mm]: [mm]720=729[/mm]

>

> [mm](m+1)!=(m+1)m!\le(m+1)\left(\br{m}{2}\right)^m=2\left(\br{m}{m+1}\right)^m\left(\br{m+1}{2}\right)^{m+1}[/mm]

>

> Aus der Bernoullischen Ungleichung folgt:

>

> [mm]\left(\br{m+1}{m}\right)^m=\left(1+\br{1}{m}\right)^m\ge1+1\Rightarrow2\left(\br{m}{m+1}\right)^m\le1[/mm]

>

> Also erhält man:

>

> [mm](m+1)!\le\left(\br{m+1}{2}\right)^{m+1}[/mm]

>

> Wofür sind diese Zwischenschritte da,

Weil sie funktionieren, sie führen zum Ziel

> und was hat man
> gemacht?

Wo genau?

[mm](m+1)!=(m+1)m![/mm] ist klar oder?

Dann wird die Induktionsvoraussetzung, nämlich [mm]m!\le \left(\frac{m}{2}\right)^m[/mm] benutzt.

Anschließend wird das nur geschickt umgeschrieben - wie man darauf kommt, das so zu machen, steht auf einem anderen Blatt ...

> Ich versteh den Bernoulli dort nicht.

Der wirkt im Schritt nach dem letzten Term aus der Zeile vor  "Aus der Bernoulliungleichung folgt ..."

[mm]\left(\frac{m+1}{m}\right)^m=\left(1+\frac{1}{m}\right)^m\ge 1+m\cdot{}\frac{1}{m}=2[/mm]

Daraus folgt, dass für den Kehrwert von [mm]\left(\frac{m+1}{m}\right)^m[/mm] - das ist [mm]\left(\frac{m}{m+1}\right)^m[/mm] - gilt, dass er [mm]\red{\le \frac{1}{2}[/mm] ist.

Damit wird dann im Anschluss an die Zeile von "Aus der Bernoulli..." der Term [mm]\left(\frac{m}{m+1}\right)^m[/mm] abgeschätzt.

Es bleibt [mm]\left(\frac{m+1}{m}\right)^{m+1}[/mm]

Also hat man, wenn man alle Zwischenschritte aus der Ungleichungskette überspringt, da stehen:

[mm](m+1)!\le \left(\frac{m+1}{2}\right)^{m+1}[/mm]


>

> Und was ist eine Induktionsverankerung?

Der Induktionsanfang, man muss ja im ersten Schritt zeigen, dass die Aussage für irgendein "Start"-n gilt (hier [mm]n=6[/mm])

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]