matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisBernoulli-Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "stochastische Analysis" - Bernoulli-Variablen
Bernoulli-Variablen < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli-Variablen: Erwartungswerte E[(X-Y)²]
Status: (Frage) beantwortet Status 
Datum: 10:58 Mo 26.01.2009
Autor: CodeWarrior

Aufgabe
Berechnen Sie den Erwartungswert und die Varianz der folgenden Bernoulli-Variablen:
a)    [mm] X=\begin{cases} 1, & \mbox{für Ws'keit } p \\ 0, & \mbox{für Ws'keit } 1-p \end{cases} [/mm]

b) Y sei eine ebensolche Variable mit P(Y=1) = r und X und Y seien unabhängig. Berechne E[(X-Y)²]

Hi Leute,

ich hab irgendwo ein trivialen Denkfehler und ich seh den Wald vor lauter Bäumen nicht mehr. Wäre nett wenn mir einer das Brett vor dem Kopf wegnehmen könnte.

Mein Ansatz ist der:
E[(X-Y)²]=E(X-Y)*E(X-Y) = (EX - EY) * (EX - EY) = (p -r) * (p -r) = p² - 2pr -r²
bzw.
E( X² - 2XY + Y² ) = EX² - 2*EXY + EY² => da X,Y unabhängig EXY = EX * EY

=> EX² - 2*EX*EY + EY²

=> p² - 2pr + r²

In der Lösung steht jedoch E[(X-Y)²] = p - 2pr + r (quadrate fehlen)

Is schon fast peinlich aber ich hab die Zeit nicht mehr mich noch länger damit zu befassen.

Vielen Dank schon mal an alle

Gruß,

      Codewarrior


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bernoulli-Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Mo 26.01.2009
Autor: vivo

Hallo,

[mm]E[(X-Y)^2] = p (1-r) + r (1-p) = p - pr + r - rp = p - 2pr + r [/mm]

denn es gibt vier Möglichkeiten für den Wert [mm] (X-Y)^2 [/mm] :

X=1 , Y=0 , [mm] (X-Y)^2 [/mm] = 1 mit W.keit: p(1-r) da X,Y unabhängig
X=1 , Y=1 , [mm] (X-Y)^2 [/mm] = 0 mit W.keit: pr da X,Y unabhängig
X=0 , Y=1 , [mm] (X-Y)^2 [/mm] = 1 mit W.keit: r(1-p) da X,Y unabhängig
X=0 , Y=0 , [mm] (X-Y)^2 [/mm] = 0 mit W.keit: (1-p)(1-r) da X,Y unabhängig

so wie du es lösen wolltest geht es natürlich auch denn was ist denn der Erwartungswert von [mm] E[X^2] [/mm] ?

[mm] E[X^2] [/mm] = [mm] 1^2 [/mm] p + [mm] 0^2 [/mm] (1-p) = p !!!!!!!!!!!!!!!!!

gruß

Bezug
                
Bezug
Bernoulli-Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Mo 26.01.2009
Autor: CodeWarrior

Hallo Vivo,

du hast natürlich vollkommen recht.....*AnKopfKlatsch* :-)

Danke dir vielmals.

Gruß,

     CodeWarrior

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]