Bernoulli-Exp. (n unbekannt) < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Für eine Studie werden 50 Unfallakten im Archiv gesucht, bei denen der Unfall von einer Frau aufgrund von überhöhter Geschwindigkeit verursacht wurde. Die Akten im Archiv sind nur nach Datum, nicht nach Geschlecht und Unfallursache sortiert.
31% aller Unfälle werden von Frauen verursacht, 12% davon durch überhöhte Geschwindigkeit, d.h. 3,72% werden von Frauen mit überhöhter Geschwindigkeit verursacht.
Die Frage lautet: Wie viele Akten müssen voraussichtlich durchgesehen werden, bis mit einer Wahrscheinlichkeit von 90% 50 geeignete Akten gefunden worden sind?
Mein Ansatz war, die Gleichung
binompdf(ipart(x), 0.0372, 50) = 0,9
mit meinem Taschenrechner (TI-83) zu lösen, aber die Gleichung hat keine Lösung. Was muss ich anders machen?
Mfg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi, Panzer,
Dass bei der Aufgabe genau 90% herauskommen, ist nicht zu erwarten. Du musst den Ansatz mit "mindestens 90%" machen!
Wenn Du schon die Normalverteilung als Näherung kennst, würd' ich übrigens mit dem Ansatz
[mm] \Phi(\bruch{50 - 0,0372*n+0,5}{\wurzel{n*0,0372*0,9628}}) \ge [/mm] 0,9
rechnen!
Oder braucht man bei Verwendung des TI-83 keine Näherungen dieser Art mehr? Kenn' mich mit dem Gerät nämlich nicht aus!
|
|
|
|
|
Ja, die Normalverteilung haben wir kurz behandelt, aber wir wenden vorrangig die Binomialverteilung an, da der TI83 diese numerisch lösen kann. Wie sähe die Gleichung für die Binomialverteilung aus!?
|
|
|
|
|
Hi, Panzer,
etwa so: P(X [mm] \ge [/mm] 50) [mm] \ge [/mm] 0,9 mit B(n; 0,0372)-verteilter Zufallsgröße X,
also: [mm] \summe_{i=50}^{n}B(n; [/mm] 0,0372; i) [mm] \ge [/mm] 0,9.
bzw. 1 - [mm] \summe_{i=0}^{49}B(n; [/mm] 0,0372; i) [mm] \ge [/mm] 0,9.
und nochmals umgeformt: [mm] \summe_{i=0}^{49}B(n; [/mm] 0,0372; i) [mm] \le [/mm] 0,1
Dabei fällt mir übrigens auf, dass ich diese Umformung bei meinem Ansatz zu Normalverteilung in der Eile vergessen habe:
[mm] \Phi(\bruch{49-n*0,0372+0,5}{\wurzel{n*0,0372*0,9628}}) \le [/mm] 0,1
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:55 So 27.03.2005 | Autor: | Zwerglein |
Hi, Panzer,
hab's mal schnell durchgerechnet (mit Normalverteilung!):
Ich erhalte: Mindestens 1591 Akten müssen durchgesehen werden.
Da der Erwartungswert in diesem Fall etwas über 59 beträgt (was mehr als die geforderten 50 "Treffer" ist), kann die Lösung zumindest nicht allzu falsch sein.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:21 Mo 28.03.2005 | Autor: | panzer_85 |
Hi zwerglein,
mit der Binomialverteilung erhalte ich numerisch n = 1588. D.h. die Aufgabe hätte streng genommen lauten müssen: "Wie viele Akten müssen durchgesehen werden, damit man mit 90% Wahrscheinlichkeit 50 oder mehr passende Akten findet."
Danke für dein Bemühen!
Mfg Panzer
|
|
|
|