matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenBereichsintegrale eben. Ber.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrieren und Differenzieren" - Bereichsintegrale eben. Ber.
Bereichsintegrale eben. Ber. < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bereichsintegrale eben. Ber.: Frage zur Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:24 So 11.11.2012
Autor: ObiKenobi

Aufgabe
Durch [mm] |x+y|\le [/mm] a und [mm] |x-y|\le [/mm] a ist ein quadratischer Bereich B festgelegt. Man berechne das Bereichsintegral [mm] \integral_{}^{}{\integral_{}^{}{(x^{2}+y^{2})dxdy}} [/mm]

Ich habe versucht das Integral in Abhängigkeit von y zu berechnen.
y=a-x

Das Integral würde sich dann für mich so entwickeln:
[mm] =4*\integral_{0}^{a}{\integral_{0}^{a-x}{(x^{2}+y^{2})dydx}} [/mm]


Erklärung (oder meine Herleitung)

Ich berechne den ersten Quadranten in Abhängigkeit von y, also vom Ursprung nach Oben von 0 bis a-x und vom ursprung nach Rechts von 0 bis a. Da diese Rechnung dann nur für den ersten Quadranten gilt muss ich das ganze noch mit 4 multiplizieren.

[mm] 4*\integral_{0}^{a}{\integral_{0}^{a-x}{(x^{2}+y^{2})dydx}} [/mm]
[mm] \Rightarrow 4*\integral_{0}^{a}{x^{2}*(a-x)+\bruch{1}{3}*(a-x)^{3}dx} [/mm]

Ist das bis dahin richtig? Oder hab ich mir da die falschen gedanken zu gemacht?



        
Bezug
Bereichsintegrale eben. Ber.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 So 11.11.2012
Autor: leduart

Hallo
bisher richtig, aber du musst noch sagen , dass [mm] x^2+y^2 [/mm] in allen 4 Quadranten dasselbe ist mit [mm] x^3+y^3 [/mm] wäre dein integral falsch.
Gruss leduart

Bezug
                
Bezug
Bereichsintegrale eben. Ber.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 So 11.11.2012
Autor: ObiKenobi

Dankeschön!

Lösung ist : [mm] \bruch{2}{3}*a^4 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]