Berechnungen/ Umrechnen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:37 Do 07.06.2012 | Autor: | drossel |
Hi, ich habe verschiendene kleinere Nachfragen die sich teilweise bei Aufgaben ergeben haben bzw. nicht vernünftig geklärt wurden, sind teilweise vll. etwas dähmlich sry, aber ich stehe dazu.
einmal zu Reihen:
1. Wie kommt man von [mm] \summe_{n=1}^{\infty}\frac{z^n+(-z)^n}{n!} [/mm] auf [mm] z(1+\summe_{n=1}^{\infty}\frac{z^{n-1}+(-z)^{n-1}}{n!})
[/mm]
2. von [mm] (\pi*z)^2\summe_{i=1}^{\infty}\frac{(-1)^i(z\pi)^{2i-2}}{(2i)!} [/mm] auf [mm] \pi*z^2(-\frac{\pi}{2}+\pi*\summe_{i=2}^{\infty}\frac{(-1)^i(z\pi)^{2i-2}}{(2i)!} [/mm] ?
3.Wir sollten die Residuen an allen Singularitäten bestimmen von [mm] f(z)=e^{\frac{1}{z^2}} [/mm]
f hat eine Singularität bei z=0. Wie kann ich hier im speziellen Fall das Residuum bestimmen? Also [mm] f(z)=\summe_{i=0}^{\infty}z^{-2n}\frac{1}{n!} =1+\summe_{i=1}^{\infty}z^{-2n}\frac{1}{n!} [/mm] . Wieso ist dann jetzt hier das Residuum diese 1?
4. Welche möglichen Werte in [mm] \IC [/mm] kann [mm] (\frac{1+i}{\sqrt2})^i [/mm] je nach Wahl eines Logarithmus annehmen? Welche Werte sind möglich?
Hier weiss ich nicht wie das geht und was heisst nach Wahl eines Logarithmus? (Das wurde nicht wirklich besprochen) Um da jetzt was zu berechnen habe ich mal angefangen: [mm] (\frac{1+i}{\sqrt2})^i=e^{i*ln{\frac{1+i}{\sqrt2}}}=e^{i*ln(e^{i\frac{\pi}{4}})}=e^{-\frac{\pi}{4}} [/mm] ...
Wäre super, wenn mir jemand weiterhelfen könnte. Lg
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Mo 11.06.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|