matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBerechnung von uneigentlichen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Berechnung von uneigentlichen
Berechnung von uneigentlichen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von uneigentlichen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:29 So 13.06.2010
Autor: borsteline

Aufgabe
Berechnen sie falls möglich die folgenden uneigentlichen integrale

a) [mm] \integral_{2}^{\infty}{\bruch{1}{(1-x)^2} dx} [/mm]

b) [mm] \integral_{-1}^{\infty}x*e^{-x}dx [/mm]

c) [mm] \integral_{1}^{\infty}\bruch{1}{\wurzel{x^5}}dx [/mm]

d) [mm] \integral_{0}^{1}\bruch{1}{\wurzel{x^5}}dx [/mm]

e) [mm] \integral_{\pi}^{\infty}cos(x)dx [/mm]

hallo, also ich wollt ma fragen ob ich mit meinen Lösungen richtig liege bzw wenn ich falsch liegen sollte was rauskommen müsste, vielen dank schonmal..

für a) -1
für b) [mm] -\infty [/mm]
für c ) [mm] -\bruch{2}{3} [/mm]
für e) nicht möglich, da sich [mm] sin(t)-sin(\pi) [/mm] aufhebt???

hoff ich lieg mit meinen Lösungen nicht allzu falsch, danke schonmal

        
Bezug
Berechnung von uneigentlichen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 So 13.06.2010
Autor: schachuzipus

Hallo borsteline,

> Berechnen sie falls möglich die folgenden uneigentlichen
> integrale
>  
> a) [mm]\integral_{2}^{\infty}{\bruch{1}{(1-x)^2} dx}[/mm]
>  
> b) [mm]\integral_{-1}^{\infty}x*e^{-x}dx[/mm]
>  
> c) [mm]\integral_{1}^{\infty}\bruch{1}{\wurzel{x^5}}dx[/mm]
>  
> d) [mm]\integral_{0}^{1}\bruch{1}{\wurzel{x^5}}dx[/mm]
>  
> e) [mm]\integral_{\pi}^{\infty}cos(x)dx[/mm]
>  hallo, also ich wollt ma fragen ob ich mit meinen
> Lösungen richtig liege bzw wenn ich falsch liegen sollte
> was rauskommen müsste, vielen dank schonmal..
>  
> für a) -1

Ich komme auf [mm] $\red{+}1$ [/mm]

>  für b) [mm]-\infty[/mm]

Hier erhalte ich $0$

>  für c ) [mm]-\bruch{2}{3}[/mm]

Hier [mm] $\red{+}\frac{2}{3}$ [/mm]

>  für e) nicht möglich, da sich [mm]sin(t)-sin(\pi)[/mm]
> aufhebt???

Das uneigentliche Integral existiert nicht, da nicht konvergent, die Begründung ist aber nicht ganz richtig:

Es ist [mm] $sin(\pi)=0$, [/mm] und [mm] $\lim\limits_{t\to\infty}\sin(t)$ [/mm] existiert nicht.

>  
> hoff ich lieg mit meinen Lösungen nicht allzu falsch,

Zeige mal deine Rechnungen ...

Und was ist mit (d)?


> danke schonmal


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]