Berechnung von Wkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:29 Fr 12.05.2017 | Autor: | Trajan |
Aufgabe | In einem Labor wird eine gefährliche Chemikalie aufbewahrt. Im Falle eines Unfalls gibt es [mm] k\in\IN\[/mm] Sicherheitssysteme, um die Chemikalie zu neutralisieren. Alle funktionieren unabhängig voneinander mit Wahrscheinlichkeit [mm] p\in\(0,1)[/mm]. In einem Jahr gibt es N Unfälle.
a) Berechnen Sie die Wahrscheinlichkeit, dass im nächsten Jahr die Chemikalie in die Umwelt gelangt, falls:
i) N konstant ist
ii) N Poisson(10)-verteilt ist.
b) Sei N konstant und X die Anzahl der Male, dass die Chemikalie im nächsten Jahr in die Umwelt gelangt. Berechnen Sie die Verteilung von X. |
Mein Problem ist zunächst mit der a) i). Offenbar soll N eine konstante Zufallsvariable darstellen. Da N somit nur genau einen Wert c annimmt, müsste es meiner Ansicht nach so sein, dass die Chemikalie mit Wahrscheinlichkeit
[mm]c \* (1-p)^k[/mm]
im nächsten Jahr in die Umwelt gelangt, denn es gibt insgesamt c Unfälle und bei jedem Unfall beträgt doch die Wahrscheinlichkeit, dass alle Sicherheitssysteme versagen [mm] (1-p)^k [/mm].
Habe ich hier einen Denkfehler gemacht oder ist das wirklich so einfach?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hiho,
> Habe ich hier einen Denkfehler gemacht oder ist das
> wirklich so einfach?
ich wollte dir zuerst schreiben "ja, es ist so einfach"… dann fiel mir aber auf: Das kann so gar nicht stimmen.
Du sollst ja eine Wahrscheinlichkeit bestimmen, nun ist deine "Lösung" [mm] $c(1-p)^k$. [/mm] Was passiert mit dem Ausdruck falls $c$ beliebig groß wird?
Kann dies dann noch eine Wahrscheinlichkeit sein?
Für die Lösung: Du hast dir ja bereits überlegt, dass ein Unfall mit der Wahrscheinlichkeit $q = [mm] (1-p)^k$ [/mm] nicht bemerkt wird. D.h. ein Unfall wird mit Wahrscheinlichkeit q nicht bemerkt. Wie groß ist nun die Wahrscheinlichkeit, dass zwei,drei,…,N Unfälle nicht bemerkt werden?
Gruß,
Gono
|
|
|
|